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Abstract—
The creation of three-dimensional digital content by scanning real ob-

jects has become common practice in graphics applications for which vi-
sual quality is paramount, such as animation, e-commerce, and virtual mu-
seums. While a lot of attention has been devoted recently to the problem
of accurately capturing the geometry of scanned objects, the acquisition of
high-quality textures is equally important, but not as widely studied.

In this paper, we focus on methods to construct accurate digital mod-
els of scanned objects by integrating high-quality texture and normal maps
with geometric data. These methods are designed for use with inexpensive,
electronic camera-based systems in which low-resolution range images and
high-resolution intensity images are acquired. The resulting models are
well-suited for interactive rendering on the latest-generation graphics hard-
ware with support for bump mapping.

Our contributions include new techniques for processing range, re-
flectance, and surface normal data, for image-based registration of scans,
and for reconstructing high-quality textures for the output digital object.

Keywords— Computer Vision, Image Processing, Range Images, Re-
flectance and Shading Models, 3D Scanning, Texture Acquisition.

I. INTRODUCTION

Three-dimensional scanners are used increasingly to capture
digital models of objects for animation, virtual reality, and e-
commerce applications for which the central concerns are ef-
ficient representation for interactivity and high visual quality.
Most high-end 3D scanners sample the surface of the target ob-
ject at a very high resolution. Hence, models created from the
scanned data are often over-tesselated, and require significant
simplification before they can be used for visualization or mod-
eling. Texture data is often acquired together with the geometry,
however a typical system merely captures a collection of im-
ages containing the particular lighting conditions at the time of
scanning. When these images are stitched together, discontinu-
ity artifacts are usually visible. Moreover, it is rather difficult to
simulate various lighting conditions realistically or to immerse
the model in a new environment. The scanning system used to
perform the experiments described in this paper is equipped with
a high-resolution digital color camera that acquires intensity im-
ages under controlled lighting conditions. Detailed normal and
albedo maps of the surface are computed based on these im-
ages. By comparison, geometry is captured at lower resolution,
typically enough to resolve only the major shape features. The
benefits of such a system are twofold. First, it allows for the
use of relatively inexpensive hardware by eliminating the need
for dense geometric sampling and by taking advantage of dig-
ital color cameras that are quickly gaining in resolution while
dropping in price. Second, the generated models are more read-
ily usable in a visualization or modeling environment which ex-
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Fig. 1. The visual quality of textures for the model of a statue obtained
from multiple overlapping scans is enhanced with our image-based fine-
registration and weighted averaging techniques. The top image shows the
final texture reconstructed from 20 overlapping scans. The two small im-
ages illustrate a detail from a highly carved area of the hair before (left) and
after (right) image-based registration. The fine chisel marks become clearly
visible after the registration.

ploits the hardware-assisted bump mapping feature increasingly
available in commercial-grade 3D accelerators.

In general, the issue of acquiring and reconstructing high-
quality texture maps has received less attention than the issue
of capturing high-quality geometry. In this work, we build
upon existing techniques developed for texture acquisition, re-
construction, and image registration to generate maps of high
visual quality for the scanned objects. Particularly because the
noise and inaccuracies of our scanner are greater than those of
high-end systems, we wish to exploit in full all the geometric
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Fig. 2. The sequence of steps required for the reconstruction of a model from
multiple overlapping scans.

and image information acquired to improve the visual quality of
the final representation.

In this paper we introduce a novel texture reconstruction
framework that uses illumination-invariant albedo and normal
maps derived from the calibration-registered range and intensity
images. The albedo maps are used in a unique way to refine a
geometry-only registration of the individual range images. After
the range data is integrated into a single mesh, the resulting ob-
ject is partitioned into a set of patches. New textures are recon-
structed by projecting the maps onto the patches and combining
the best data available at each point using weights that reflect the
level of confidence in the data. The weighted averaging lowers
noise present in the images, while the fine registration reduces
blurring, ghosting, and loss of fine texture details, as shown by
the results in Figure 1.

II. RELATED WORK

A variety of techniques are used to capture digital models of
physical objects, including CAT scans [1] and structure from
motion applied to video sequences [2]. We restrict our discus-
sion to methods involving instruments that capture range images
(in which each pixel value represents depth) and intensity im-
ages (in which each pixel is proportional to the incident light.)
A detailed summary of such methods can be found in [3].

The basic operations necessary to create a digital model from
a series of captured images are illustrated in Figure 2. After out-
liers are removed from the range images, they are in the form of
individual height-field meshes (scans.) Step A is to align these
meshes into a single global coordinate system. In high-end sys-
tems registration may be performed by accurate tracking. For
instance, the scanner may be attached to a coordinate measure-
ment machine that tracks its position and orientation with a high
degree of accuracy. In less expensive systems an initial registra-
tion is found by scanning on a turntable, manual alignment, or
approximate feature matching [4], [5]. The alignment is then re-
fined automatically using techniques such as the Iterative Clos-
est Point (ICP) algorithm of Besl and McKay [6] or the tech-

nique of Chen and Medioni [7]. Recent multiview registration
algorithms include [8], [9].

In step B the scans are integrated into a single mesh. The
integration may be performed by zippering/stitching [10], [11],
isosurface extraction from volumes [12], [13], or interpolating
mesh algorithms [14] applied to points which have been cor-
rected for line-of-sight errors (geometric errors along the line
from the scanner to the acquired point) in the individual scans.

To relate a texture map to the integrated mesh, in step C the
surface is parameterized with respect to a 2D coordinate sys-
tem and texture coordinates are interpolated between mesh ver-
tices. A simple parameterization is to treat each triangle sepa-
rately [13], [15] and to pack all of the individual texture maps
into a larger texture image. However, the use of mip-mapping
in this case is limited since adjacent pixels in the texture may
not correspond to adjacent points on the geometry. Another ap-
proach is to find patches of geometry which are height fields
that can be parameterized by projecting the patch onto a plane.
Stitching methods [1] use this approach by simply considering
sections of the scanned height fields as patches. Marschner [16]
subdivides the surface into individual patches by starting with
seed triangles distributed over the object, and growing regions
around each seed.

Using the technique described in [17], harmonic maps are
found to establish a 2D coordinate system for each patch, so in-
dividual patches need not be height fields. Other methods could
be built on tiling methods developed for multiresolution analy-
sis [18] or interactive texture mapping [19].

Parallel to acquiring geometry, intensity images are captured
to obtain information about the albedo of the surface. Such im-
ages may be recorded with electronic or traditional cameras or
by using polychromatic laser technology [15]. In step D, these
images are aligned to the corresponding geometry. In some
cases the image acquisition is decoupled from the geometry ac-
quisition [16], [20], [1]. The camera intrinsic and extrinsic pa-
rameters for the images are estimated by manual or automatic
feature matching. The advantage is that acquisition modalities
that cannot capture surface reflectance can be used for capturing
geometry.

In most cases, however, the alignment is performed by cal-
ibration. Geometry and intensity are captured simultaneously
from scanners with a measured transformation between sensing
devices. The resolution of the intensity image may be the same
as that of the range image or even higher. When the resolution
is the same, texture mapping is unnecessary since a color can be
assigned to each vertex. Nevertheless, such a representation is
inefficient and geometric simplification is typically performed
before the surface parameterization step.

The main benefit of obtaining intensity and range images si-
multaneously is that the intensity information can be used in
the registration process in step A. Various approaches have been
developed to use intensity images in registration. Johnson and
Kang [13] use color as an additional coordinate in the ICP opti-
mization. This avoids local minima in the solution in areas that
have no geometric features, but have significant variations in the
intensity. For models with pronounced geometric and intensity
features, the method has proven to be very effective. A draw-
back is having to combine position and color data with different
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ranges and error characteristics. For subtle feature variations,
these can cause one type of data to erroneously overwhelm the
other. Schütz et al. [21] introduce empirically computed nor-
malization factors to define a coupling distance that accounts for
position, normal and color differences. A number of researchers
have used information in intensity images to avoid the spatial
search required by ICP. These methods use scans that have been
aligned approximately, generally by manual means. Weik [22]
uses intensity and intensity gradient images from the approxi-
mately aligned scans after they are transformed into a common
camera view. Locations of corresponding points on overlapping
scans are inferred based on the difference between intensity val-
ues at a given pixel and the gradient at that pixel. Pulli [23]
performs a full image registration to find corresponding points.
Similar to Weik’s method, one intensity image is projected into
the camera view of the second, using the approximate align-
ment. A planar perspective warping [24] of the first image is
then computed to match the rendered image of the second scan.
For each corresponding pixel of the two images, under the com-
puted transformation, a pair of points from the two scans is gen-
erated. A least-squares optimization is then performed to com-
pute a registration matrix. Both Weik’s and Pulli’s methods re-
quire operations on the full high-resolution intensity images. A
high degree of overlap is required, and scan-to-scan variability
in illumination introduces error. Fine scale geometry is matched
only if these details are revealed by lighting in the images. Both
methods are effective if there are substantial albedo variations
in the scans that dominate illumination variations. Gagnon et
al. [25] avoid full image operations in an alternative non-ICP
method for using intensity images to refine an initial manual
alignment. Pairs of range images are aligned manually by mark-
ing three points on overlapping intensity images. The locations
of the matching points are refined by searching their immedi-
ate neighborhoods using image cross-correlation [26]. A least-
squares optimization follows to determine a general 3D trans-
formation that minimizes the distances between the point pairs.

After intensity images are aligned to geometry, illumination
invariant maps are computed to estimate the surface albedo (step
E.) The number of scans versus the number of intensity images,
as well as the resolution of the scans compared to the resolu-
tion of the images are issues that have to be considered. For a
small number of scans and a large number of intensity images
obtained under calibrated lighting conditions, the full Bidirec-
tional Reflectance Distribution Function (BRDF) can be esti-
mated [27]. If many scans are required to represent an object
and only a few high-resolution intensity images are captured per
scan, photometric stereo techniques [28] can be used to estimate
Lambertian reflectance [29]. Alternatively, if the range and in-
tensity images have the same resolution, the geometry can be
used to compute reflectance from a single image [30].

In step F the final texture is reconstructed. The illumination
invariant images are mapped onto the integrated, parametrized
surfaces. The main concerns at this step are that the final tex-
ture is as sharp as the best input images, that seams between
scans or texture patches are not visible, and that all information
available is fully exploited to maximize the signal-to-noise ra-
tio. To maintain sharpness, Rocchini et al. [1] propose a stitch-
ing approach that uses a single illumination invariant map at

any given surface point. Continuity in sharp features between
adjoining maps is maintained by a local texture adjustment at
texture boundaries. This requires high-quality input maps that
have no visible noise and no scan-to-scan chromatic differences.
Map adjustment techniques such as this, as well as deghosting
methods for image mosaics [24], decouple texture from geomet-
ric variations. This may cause noticeable artifacts when these
variations are correlated (e.g., dents and scratches that reveal
underlying material with different reflectance properties.) To
avoid jumps in color appearance and to reduce noise, Johnson
and Kang [13] combine information from multiple overlapping
scans. Marschner [16] estimates Lambertian reflectance at each
texture pixel in the reconstruction step, using every data value
from captured images covering the point. Each data value is
weighted by the relative angle to the camera view, light source
and specular direction in the captured image. In this case, if tex-
ture alignment is imperfect blurring or ghosting artifacts may be
generated. Pulli et al. [23], [31] do not explicitly form texture
images associated with the geometry, but propose a dynamic,
view-dependent texturing algorithm which determines a subset
of the original images taken from view direction close to the
current view, and synthesizes new color images from the model
geometry and input images.

III. OVERVIEW

In this section we present our approach to each of the steps de-
scribed in the previous section. Our goal is to produce a model
of high visual quality, rather than to acquire a dense geometric
representation. We propose two new techniques for the registra-
tion and reconstruction steps, respectively. They are outlined in
this overview and will be described in more detail in Sections IV
and V.

A. Scan Acquisition and Processing

We use a scanning system in which range and intensity im-
ages are obtained simultaneously and are registered via a pri-
ori calibration. The scanner is a hybrid multi-view/photometric
system built around the Visual Interface Virtuoso [32]. Range
images are captured by a multi-camera stereo system which
projects a striped pattern onto the target object. The system
produces range images that are converted to individual triangle
meshes (scans) with an approximate intersample distance of 2
mm and submillimeter depth accuracy.

Intensity images are recorded under five calibrated lighting
conditions and have a much higher resolution than the geomet-
ric scans (between 0:25 mm and 0:5 mm intersample distance,
depending on surface orientation.) The intensity images are pro-
cessed to extract RGB albedo, normal, and weight (confidence)
maps for each scan. This photometric processing involves us-
ing the approximate knowledge of the underlying geometry to
account for imperfections in the measuring system, as well as
global compensation of variations in camera response [29], [33].

We refer to the images that contain the RGB albedo and nor-
mals generically as texture maps. Holes may occur in these tex-
tures where photometric processing fails whenever fewer than
three light sources are visible at a point. In such regions, the
textures are filled using the normals of the underlying mesh and
data from just one or two of the associated intensity images. A
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weight map encodes a degree of confidence in the data at each
pixel of a texture map. The weight includes the effects of dis-
tance to the camera, angle to the camera view direction, whether
a photometric normal was computed, and the distance to the
edge of the scan. The boundaries between photometric values
and underlying values are smoothed, as are the corresponding
weights, so that abrupt changes in the final texture will not be
visible.

The acquisition of intensity images aligned with the corre-
sponding range images and the photometric processing just de-
scribed correspond to steps D and E in Figure 2.

B. Registration

We begin the scan registration step A with a pairwise man-
ual alignment to estimate the position of each scan with respect
to a global coordinate system. This step is performed at the
same time with the removal of outliers in the range data. Next,
the initial manual registration is refined using a variation of the
multiview ICP algorithm [8]. Our ICP solution uses geometric
information only.

Like Johnson and Kang [13] and Schütz et al. [21], we seek
to produce high-quality texture maps by combining informa-
tion from multiple overlapping scans at each pixel. However,
we avoid the mixing of position and color, and the use of em-
pirical weights, by performing an image-based alignment af-
ter the geometry-based registration has converged. Similarly to
Gagnon et al. [25], we use image matching to refine the align-
ment. However, our method is different in a number of critical
ways. First, since this is a refinement step, we compare im-
ages that are reprojected onto the same camera view to account
for geometric distortions. Second, instead of manually selecting
three points to be matched, we have implemented an automatic
selection procedure that identifies a larger number of samples
in areas with significant image structure. Finally, we use images
that are consistent with each other by processing them according
to methods described in [33]. Our registration method has some
similarities with the one proposed by Pulli [23]. Pulli also uses
images to find matching points pairs, projects them back onto
the range scans to find corresponding surface points, and then
minimizes a functional of their pairwise distances. However,
rather than relying on a full-image warping transformation to
find matching points on overlapping scans, we do local searches
on small regions based on image correlation. The local searches
avoid the need for a hierarchical image registration method, and
bound the adjustments to a small search range, since the initial
alignment has already been improved by ICP. Also, rather than
considering each pair of corresponding pixels as a valid match,
we automatically select a subset of sample pixels in areas rich
of detailed image features (derived from the albedo or normal
maps) to minimize the occurrence of false matches.

The basic idea of our image-based registration algorithm is to
use detail maps, by which we mean any image maps that can
be computed by processing and or combining the available tex-
ture maps. Detail maps are used to generate highly-accurate
pairs of corresponding points on the scans by matching their
image neighborhoods. The scans are considered for alignment
one at a time, in random order, while the others remain fixed,
as suggested in [8]. Given a scan to be aligned, sample points

are selected automatically on its detail map in regions where
interesting features are present. The detail maps correspond-
ing to all overlapping scans are then projected onto the current
image plane and a search is performed in the neighborhood of
each sample point for a best match in the overlapping areas of
the projected maps. The resulting pairs of image point sam-
ples are back-projected onto their corresponding geometry and
used to compute a rigid transformation that minimizes the sum
of squared distances between corresponding points. The trans-
formation thus obtained is applied to the moving scan, and the
process is repeated until a convergence criterion is satisfied.

C. Surface Reconstruction and Parameterization

Having obtained a tightly aligned set of scans, we proceed to
integrate them into a seamless triangle mesh (step B.) We use a
technique called Ball Pivoting [14], which efficiently generates
a triangle mesh by interpolating an unorganized set of points.

Next, we determine a suitable surface parameterization (step
C) to allow for an efficient computation of texture maps that
cover the entire object without overlapping. Since we wish
to use mip-mapping techniques, we partition the surface into
patches and assign one texture image to each patch, rather than
parameterizing the mesh one triangle at a time.

Our texture reconstruction technique uses all the acquired
data at each point as opposed to stitching together pieces of
the initial scans. Hence, we do not use the initial scans as
texture patches. Instead, a new partition of the geometry into
height-fields is computed by a greedy approach that begins with
a number of seed triangles and grows the surface regions around
them until a maximum patch size or maximum slope deviation
is reached. Each patch is then projected in the direction which
maximizes its total projected area, providing a simple local pa-
rameterization.

More sophisticated techniques for partitioning a mesh into
patches suitable for texture computation have been proposed,
see for example [17], [18], [16], [19]. Any method that pro-
vides a mapping from the texture image assigned to the patch
onto the patch geometry could be used in our approach, and it is
reasonable to expect that any of the methods cited above would
generate a smaller number of patches and a more even allocation
of texture pixels per surface area than what we obtain with our
simple greedy strategy. However, we found that for the datasets
used in our experiments our technique provided patches of suf-
ficient quality.

D. Texture Reconstruction

Once the model is partitioned into height-field patches, albedo
and normal maps are reconstructed for each patch by combin-
ing the information in all overlapping textures (step F.) Informa-
tion from the various textures is combined using weights rep-
resenting the confidence in each pixel value. Various propos-
als for weights for texture combination have been proposed by
Pulli [23] [31], Ofek et al. [34], Pighin et al. [35], and Neuge-
bauer and Klein [20]. Weights are combined in the techniques
described in these papers from factors such as the orientation of
the surface element in the direction to the scanner, the distance
to the edge of the scan, and the variation of pixel vlaues for the
same surface element appearing in multiple scans.
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In our approach, we being by identifying all scans which con-
tain the albedo and normal data for the current output pixel be-
ing computed. The corresponding values are combined using
a weighting scheme using geometric factors described in pre-
vious methods and a weight indicating whether the albedo and
normal were computed from the photometric data, or are a back-
ground, low resolution value. Using weights computed per scan
avoids discontinuities at patch-to-patch and scan-to-scan tran-
sitions (see also Figure 9.) Occlusions must also be handled
correctly. In practice, since the amount of data involved in this
phase may be quite large, it is important to organize the required
computations efficiently.

IV. IMAGE-BASED REGISTRATION

The goal of image-based registration is to improve the
geometry-based alignment of scans that make up a 3D object
by taking into account additional information contained in the
high-resolution detail maps computed for each scan.

Detail maps are generated from albedo and normals maps.
Depending on the application, they may be single or multi-
channel images. In our experiments we use grey-scale albedo
maps and geometry-invariant maps derived from the normals.
The geometry-invariant, that is coordinate system independent,
maps are computed as the dot product of each surface normal
with the average of the normals in a small surface region around
it. The proposed image-based registration algorithm makes use
of image matching to identify pairs of corresponding points on
the high-resolution detail maps. Subsequently, these pairs are
back-projected onto the scans and used to derive a rigid trans-
formation that minimizes the distance between corresponding
points in a least-squares sense [6].

Figure 3 illustrates our method using a simple example con-
sisting of three scans Si, Sj , and Sm, with their respective detail
maps, Di, Dj , and Dm, and cameras Ci, Cj , and Cm. For the
purposes of this example, Si and Sj are fixed, while Sm is be-
ing moved to achieve better alignment with respect to S i and Sj .
The detail maps Di and Dj are rendered onto the image plane
of camera Cm, generating projected detail maps ~Di and ~Dj , re-
spectively. Ideally, in the absence of noise and errors in the ini-
tial alignment, the imagesDm, ~Di, and ~Dj would be identical in
the areas of overlap. A sample point selected in such an area in
one image would identify precisely the same feature in all over-
lapping images. In practice, corresponding features may appear
shifted due to misalignment. Let t1m be a sample point on Dm

with pixel coordinates (u; v) that are inside the overlap region
of Dm with ~Di and let t1i be the point on ~Di with the same coor-
dinates: t1i = (u; v). A correlation-based search is conducted in
a neighborhood of t1i to identify a point b1i for which the image
area around it best matches the area around t1m. The points t1m
and b1i are back-projected onto p1m 2 Sm and p1i 2 Si, respec-
tively, and the pair (p1m; p

1

i ) is saved. The process is repeated
for other sample points on Dm where there is overlap with ei-
ther ~Di or ~Dj . Finally, after all samples are processed, the pairs
(pkm; p

k
h=i;j) are used to compute a rigid transformation that im-

proves the position of scan Sm with respect to Si and Sj in the
least-squares sense [6].

Our image-based registration algorithm is described in pseu-
docode in Figure 4. The input consists of the scans to be regis-

tered with their initial registration matrices, as well as their cor-
responding detail maps, depth maps, bounding boxes, and lists
of sample points. In addition, the calibration parameters of the
intensity-capture camera are considered known. These param-
eters include the position and orientation of the camera in the
local frame of each scan, its field-of-view angle, and the pixel
size of the output image. Knowledge of these parameters allows
us to define a camera that matches the view of the capture cam-
era. With the exception of the bounding boxes which are stored
in memory for the entire duration of the alignment, all other data
is loaded on demand. The output is a set of registration matrices
(one per scan) that defines the new, more accurate alignment.
The main steps of the algorithm are described next.

Input: scans to be registered: S1; : : : ; SN
initial registration matrices: M1; : : : ;MN

detail maps: D1; : : : ; DN

depth maps: Z1; : : : ; ZN
bounding boxes: B1; : : : ; BN

lists of sample points: L1; : : : ; LN
where Lm = f(tm; pm)jtm 2 Dm; pm 2 Smg

camera parameters: C

Output: accurate registration matrices: M1; : : : ;MN

Algorithm Image-Based Registration

1. read B1; : : : ; BN

2. while (convergence criterion not satisfied)
3. (m1; : : : ;mN ) = random permutation (1; : : : ; N)
4. for (m = m1; : : : ;mN )
5. Cm = camera (Mm; C)
6. register scan (m;Cm)

Procedure register scan (m;Cm)

1. read Dm; Zm; Lm
2. for (i = 1; : : : ; N) and (i 6= m)
3. read Si; Di

4. if (Bm intersects Bi)

5. ~Di = project scan (Si; Di; Cm)

6. Omi = compute image overlap (Dm; ~Di)
7. if (jOmij > min overlap)
8. for ((tm; pm) 2 Lm) and (tm 2 Omi)
9. ti = tm
10. bi = find best match (tm; Dm; ti; ~Di)
11. pi = back project (bi; Si; Cm) 2 Si
12. insert pair (pm; pi; pairs list)
13. if (jpairs listj � 3)
14. Mm = compute rigid transform (pairs list)

Fig. 4. Skeleton of the image-based registration algorithm.

A. Selection of Sample Points

Prior to the actual alignment, a list of sample points Lm is
computed for each scan Sm. We use image-processing tech-
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Fig. 3. (a), (b) Example and (c) two-dimensional diagram of the image-based registration algorithm. Three scans are involved: scan Sm (blue), with corresponding
detail map Dm is being registered to the two overlapping scans Si (red) and Sj (green). Detail maps Di and Dj are mapped onto their respective geometry
and rendered onto the image plane of camera Cm , generating reprojected images ~Di and ~Dj (the three images Dm, ~Di and ~Dj are shown cropped in (b). ~Di

and ~Dj are drawn with a little offset in (a) and (c) for illustrative purposes.) In the ideal case of perfect scans and no registration error, these images would be
pixel-by-pixel the same as Dm in the areas of overlap. Assuming some registration error, we consider a set of sample points on detail map Dm , distributed
in areas where interesting image features are present. Starting with a sample point t1m on Dm , corresponding to geometric point p1m on Sm, we search in the
neighborhood of the corresponding point t1i on ~Di for a point b1i that maximizes image correlation (initial and final points are shown with yellow and magenta
dots, respectively, on the images in (b).) The point b1i is then back-projected onto the scan Si into p1i . The process is repeated to generate a set of pairs of
corresponding points (pkm; pk

h
); h = i; j. A rigid transformation is computed that minimizes the sum of squared distances between corresponding points.

niques to identify points tkm; k = 1; : : : ; nm in the detail map
Dm. The goal is to select points in areas of rich content that
pertain to matching by cross-correlation, rather than to identify
precise image features. In addition, for each tkm we also com-
pute the corresponding point pkm 2 Sm under the perspective
projection defined by the capture camera.

We have experimented with a variety of techniques, including
selection based on moment invariants and several edge-detection
methods. For the test cases described in this paper, we used an
edge-detection technique which is illustrated in Figure 5. Fig-

ure 5(a) shows a portion of the original detail image. First, the
detail image is slightly blurred using a Gaussian filter to re-
duce the noise. Next, horizontal and vertical Sobel operators
are applied separately to the blurred image. The two resulting
edge images are combined into one that contains at each pixel
the largest of the corresponding values at that pixel (see Fig-
ure 5(b)). A thresholding operation is applied next to filter out
regions with low gradient variation. The threshold value is se-
lected automatically, based on the image histogram. The result
is a bitmap that contains values of one where the gradient varia-
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(a) (b)

(c) (d)

Fig. 5. Selection of sample points from detail maps using edge detection.

tion is above the threshold and zero elsewhere (see Figure 5(c)).
This bitmap is used to select sample points in regions where
edges have been identified. Before selecting the points, all pixel
values are set to zero where the corresponding weights in the
weight map are below a given confidence threshold, since we do
not want any samples in these areas (see Figure 5(d).) Thresh-
olding weights is particularly critical in our system in which the
weights include whether there was adequate data available for
a particular scan to compute detailed results. We take care to
eliminate areas with low weight values so that scans with inad-
equate data in a particular area are not used as scans with no
fine detail in that area. For the actual selection, a regular grid
is superimposed onto the bitmap to ensure that selected points
are distributed over the entire image. The first non-zero pixel
encountered in each grid cell in row-wise order is selected as
the sample point corresponding to that cell and is inserted into
the list of samples. During alignment, points in the list are con-
sidered in random order to ensure that all meaningful regions
of the image contribute to the registration process. We empha-
size that we use the edge bitmap solely for the purpose of se-
lecting samples. The actual image matching is performed by
cross-correlation on the detail maps in the neighborhood of each
sample point.

B. Projection of Detail Maps

For the alignment of a given scan Sm (procedure
register scan in Figure 4), the pairs of points to be matched are
selected based on corresponding points in the detail map Dm

and the detail maps of overlapping scans. To compare two de-
tail maps Dm and Di, they have to be rendered from the same
camera position, i.e., Dm is compared to ~Di, the projection of

Di onto the image plane of the camera Cm (see Figure 3.)
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p1m
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Fig. 6. Occlusions example: point p1i is visible from camera position Ci , but
not from Cm . Since the detail map Di is projected onto the image plane
of Dm, this point must be discarded. The depth map Zm corresponding to
scan Sm is used to mask points of Si which are not visible from Cm . In
contrast, point p2i is visible from Cm and its texture is recorded onto ~Di.
The red and blue curves identify the two scans Sm and Si, respectively. The
areas of ~Di that receive texture from scan Si are also highlighted in blue.

A simple way to perform such projections is to render scan S i

with the detail image Di as its texture, using camera Cm. How-
ever, this approach produces incorrect results in the presence of
scan self-occlusions or occlusions from other scans, as shown in
Figure 6. To avoid this problem, a depth map Zm is stored with
each scan. This is simply a binary dump of the z-buffer created
by rendering Sm using its own camera Cm. Before rendering
Si from camera position Cm, the z-buffer is preloaded with the
depth map Zm. A small offset � is added to prevent z-buffer
contention and to account for alignment errors between Sm and
Si. The occluded parts of Si are now correctly discarded, and
the corresponding regions in the projected detail map ~Di receive
no texture. Figure 6 shows two contrasting situations: point p1i
is occluded by p1m and thus the corresponding pixel t1i 2 ~Di

remains black, whereas point p2i is visible from Cm and thus t2i
receives texture values from Di.

C. Identification of Matching Pairs

Given a pair of detail maps Dm and ~Di, both rendered from
the same camera position Cm, the algorithm first computes an
overlap bitmap Omi. A pixel in this bitmap is set to one if and
only if both Dm and ~Di have a weight at that pixel that is larger
than the confidence threshold. If there is sufficient overlap, the
sample points (tm; pm) 2 Lm for which tm is inside the overlap
region are processed one-by-one, until a prespecified number of
matching pairs is found or until all points have been processed.

For a given sample (tm; pm) such that tm 2 Dm has pixel
coordinates (u; v), we define a point ti 2 ~Di with the same
coordinates. Ideally, tm and ti mark the same image feature
on Dm and ~Di, i.e., scans Sm and Si are perfectly aligned. In
practice, ti may be slightly offset with respect to the feature
marked by tm due to errors in the alignment of the scans. Our
strategy is to search in the neighborhood of t i for another point
bi that is a better match for tm, and to use the corresponding
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Fig. 7. Sliding-window search for the point maximizing cross-correlation be-
tween image neighborhoods. The search starts at point ti 2 ~Di, marked in
black. The green area is cross-correlated to the corresponding area in Dm .
The operation is repeated for areas centered in all pixels within the search
region outlined in red. The pixel corresponding to the center of the maxi-
mum cross-correlation area is marked in red. The search window is moved
to the new center and a new iteration starts.

point pi = back projection(bi; Si; Cm) 2 Si as the match of
pm in the final alignment. The search for bi is performed using
a sliding-window cross-correlation approach which is outlined
in Figure 7.

The radius of the search region for the cross-correlation and
the size of the correlation window are defined taking into ac-
count the resolution of the scanning system and the maximum
registration error after the geometry-based alignment. In our
case, given a linear intersample distance of the scanner of ap-
proximately 2 mm and a residual error after the geometry-based
alignment of less than 4 mm, we define a conservative radius
of 7 mm (i.e., 14 pixels assuming a 0:5 mm resolution in the
detail maps) for the search area around each point t i. A cross-
correlation is performed in this area using a window of 15 mm
radius (i.e., 30 pixels), also a fairly conservative choice to ensure
that significant features around each point are included.

The location within the search area that yields the highest
value for the correlation coefficient defines the best match po-
sition bi. Only pairs for which the correlation value is above a
certain threshold are used to refine the alignment. We compute
the correlation coefficient of n data points (tkm; t

k
i ) according to

Pearson’s formula [26], �2 = s2mi=smmsii, where

smm =
X

Dm(tkm)2 �
1

n

hX
Dm(tkm)

i2
;

sii =
X

~Di(t
k
i )
2 �

1

n

hX
~Di(t

k
i )
i2
;

smi =
X

Dm(tkm) ~Di(t
k
i )�

1

n

X
Dm(tkm)

X
~Di(t

k
i ):

Cross-correlation is known to be a time-consuming procedure.
For efficiency, we replace an exhaustive search in a 14-pixel ra-
dius area with a sliding window approach that is faster to com-
pute. We restrict the radius of the search area to 3 pixels and
we allow it to slide in the direction of the best correlation for
a predefined number of times. An obvious problem with this
method is that the search may terminate by finding a local max-
imum of the correlation function and thus the global maximum
is never reached. We compensate for this drawback by identi-
fying a larger number of points than are actually needed. An
alternative solution is to allow the search window to slide out
of a local maximum with a given probability dependent on the
surrounding values.

D. Multiple Iterations and Convergence

Our image-based registration method generally performs
multiple iterations to allow each scan to adjust its position with
respect to its neighbors. The number of iterations is typically de-
termined by some convergence criterion. In our experiments, we
use as a measure of convergence the change in the mean square
error between consecutive iterations. If this change is small, the
algorithm stops. At each iteration, the scans are considered for
alignment one-by-one, in random order. The scan currently be-
ing aligned moves in search for a better position with respect to
all other scans, which are considered temporarily fixed. Culling
is used to speed up the procedure by considering only scans with
intersecting bounding boxes.

This image-based registration algorithm has several advan-
tages. It takes into account high-resolution information in the
captured images to fine-tune the geometric alignment of scans.
The fine-tuning is performed via image matching involving a
simple and efficient cross-correlation procedure that is restricted
to small areas around selected sample points. Specific image
features need not be identified. Any image processing technique
that allows for finding feature-rich regions in the input images is
well-suited for the selection of the sample points. The sampling
method presented is completely automatic and requires no man-
ual intervention. Occlusions are handled simply and efficiently
by comparing depth values stored in precomputed depth buffers.

There is a potential residual registration error due to the lower
resolution and line-of-sight error of the range scans. The effect
of these two sources of error is alleviated by two factors. First,
these errors are randomly distributed around a mean value, so
that using a large number of sample points, and having multiple
overlapping scans at each point, tends to average out the error.
Second, both errors are nearly perpendicular to the image plane
of the albedo and normal maps, and contribute minimally to
ghosting artifacts in the resulting textures. The line-of-sight er-
ror affects all methods that rely on reprojecting matching image
points on the corresponding range scans as a step in computing
the registration transformation [13], [22], [23], [25], although it
has greater impact in our system given our assumption of lower
resolution range scans compared to the intensity images. In ap-
plications where a greater registration accuracy in the direction
normal to the surface must be achieved, the normal maps could
be used to locally refine the geometry obtained from the range
scans, and to estimate with increased resolution the position of
points on the surface. Increased accuracy could also be obtained
by interleaving steps of registration and line-of-sight error cor-
rection. These ideas will be explored in future work.

V. TEXTURE RECONSTRUCTION

The goal of texture reconstruction is to generate seamless tex-
ture maps covering the model. Our approach for combining
textures is similar to those presented by Pulli [23] [31], Ofek
et al. [34], Pighin et al. [35], and Neugebauer and Klein [20].
However, we use processed albedo and normals maps, rather
than acquired textures, and weights that reflect the confidence
in these maps for each scan in addition to geometric confidence
measures. We compute view independent maps, rather than the
view dependent maps used in some methods. We use all possi-
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(a) (b) (c) (d)

Fig. 8. Calculation of the final weight map for a section of a scan used to reconstruct the model in Figure 1. (a) Intensity image. (b) Preliminary weight map based
on the ratio of projected to true area for each pixel. (c) Preliminary weight map based on the photometric calculations. (d) Final weight image.

ble data sets for each surface, rahter than just a selected two or
three. Finally, we discuss here a number of issues important in
the efficient implementation of the reconstruction.

To make maximum use of the acquired data, texture maps are
recalculated based on the integrated mesh. For a given scan,
albedo and normal data may now be obtained in regions where
there is no geometry available from that scan.

The input to the texture reconstruction process consists of the
collection of height-field patches that form a partition of the
model surface and the finely registered scans with the recom-
puted albedo, normal, and weight maps. A mapping between
geometry and corresponding textures is defined as an orthogonal
projection in the direction that maximizes the projected patch
area (see Figure 9.)

The pixel size of a texture is determined based on the pro-
jected size of the corresponding patch and on a user-specified
parameter representing the desired number of pixels per unit
of length. All individual texture maps are combined using the
weight maps defined in Section III. Figure 8 shows the cal-
culation of the final weight map for a section of a scan as the
combination of two preliminary weight maps. For illustrative
purposes, the relative weights in each weight image are shown
with a color map with black as zero, and the hues from blue to
red corresponding to increasing non-zero weights. Figure (a)
shows a section of an intensity image for one of the scans used
to create the model in Figure 1. Figure (b) shows the first pre-
liminary weight map for this section of the scan based on the
ratio of projected to true area for each pixel. This ratio is com-
puted as the cosine of the surface normal to the camera direc-
tion divide by the square of the distance to the camera. Oc-
clusion boundaries, such as the tip of the nose in this image,
are detected, and a weight of zero is assigned to each occlusion
boundary. By setting these pixels to zero, occlusion boundaries
are treated in the same manner as the edges of the scan. Fig-
ure (c) shows the second preliminary weight map based on the
photometric calculations. If a surface normal can be computed
from photometric data for a pixel it is assigned a high weight.
If such a normal can not be computed, but there is an underly-
ing surface normal value, a much lower, but non-zero value is
assigned. A smooth transition (indicated by the transition from
red to blue in Figure (c)) is applied between the photometric and

non-photometric areas, so that there will not be a sudden spatial
break in the contribution of this scan to the final result. The val-
ues of Figure (b) and (c) are multiplied and rescaled to form the
final weight image, shown in Figure (d). The last step in com-
puting the final weights in (d) is to compute a smooth transition
from areas with non-zero weight, to the edge values which have
a weight of zero. The weights are stored as 0-255 values. The
quantization accounts for the large black area in the lower right
of this example, where the values in both images (b) and (c)
are low, and the values are further reduced by the transitioning
to the nose silhouette edge. Because weights are generated per
scan and not per patch, transitions across patch boundaries are
not visible. Also, since the weights for each scan decrease with
distance to the scan border, scan-to-scan boundaries are not vis-
ible.

The computation of a value for each texture pixel is illustrated
in Figure 9. In this example, an albedo map A is computed for
patch P . The three scans Si, Sj , and Sk have camera frusta that
intersect the bounding box of patch P and are considered for the
reconstruction.

A straightforward solution to the remapping problem is to use
ray-casting. However, the time required to process all ray-mesh
intersections makes this procedure prohibitively expensive. An-
other method to combine the albedo maps of the three scans into
A is to define an orthogonal camera and then render P multiple
times, with each of the albedo and weight maps from the three
scans as its texture. The rendered images are accumulated using
weighted averaging. This approach is also inefficient and pro-
duces incorrect results in the presence of occlusions. Consider
the situation in Figure 9(b): points p1 and p2 receive values from
the maps associated with scan Si, even though they are occluded
when rendered from camera position C i. Similar to the method
described in Section IV depth values are used to filter out oc-
cluded points.

Specifically, to compute an albedo map A for a patch P , ac-
cumulation buffers for albedo, normals, and weights are created
and initialized. P is then sampled at points corresponding to
each pixel of A. This can be done by defining an orthogonal
camera that matches the projection of P onto A, then scan-
converting the primitives in patch P into a z-buffer.

We use the inverse viewing transformation to convert each
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Fig. 9. (a) Two-dimensional diagram of texture remapping. An albedo map A is computed for patch P , which is parameterized as a height field onto the image
plane of A. Three scans Si, Sj , and Sk have camera frusta intersecting patch P and are considered for the remapping. For each pixel a on texture A, consider
the corresponding point p on patch P . This point projects onto points ai, aj and ak in the albedo maps of the three scans, and onto wi, wj and wk in the
corresponding weight maps. The resulting albedo value for a is (wiai + wjaj + wkak)=(wi +wj +wk). This weighting scheme avoids discontinuities at
transitions between patches or between scans within the same patch. (b) Examples of occlusions.

pixel (u; v) and the associated depth to world coordinates that
are stored in a point map. We start the processing of each over-
lapping scan by loading its albedo, normal, weight and depth
map, and by defining a perspective camera matching the actual
camera that was used to capture the intensity images. We then
consider each pixel of A. We retrieve the corresponding patch
point from the point map, and use the viewing transformation
to map the point into pixel coordinates (u; v) and its depth rel-
ative to the perspective camera. We compare the depth of the
point with the value stored in the depth map Z i for the scan. If
the depth is larger than the stored value (minus a small offset
to account for numerical errors), then the point is occluded and
therefore no longer considered. Otherwise, we fetch the albedo,
normal and weight values at location (u; v) in the corresponding
maps, and update the accumulation buffers. After all the scans
have been processed, accumulated albedo and normal values are
divided by the accumulated weight.

By pre-sampling the patch geometry and by fetching values
from all maps simultaneously, computations are streamlined.
Occlusions are handled simply and efficiently by comparing
depth values in precomputed depth buffers. Image and geomet-
ric information are loaded on demand, to allow processing of
large sets of scans that do not fit in memory. The only infor-
mation stored for all scans is the view-frustum of the capture
camera and the bounding box of each patch to allow view frus-
tum culling at the bounding box level.

VI. RESULTS

We demonstrate our new methods with results for three qual-
itatively different test objects. One is a 26 cm tall vase, with few
geometric features and sharp surface color variations. The sec-
ond is a 12 cm tall piece of clay with no surface color variations,
but a lot of small scale geometric variations. The third object is
a section of a large marble statue with subtle variations in both
geometry and color, shown in Figure 1.

For the vase, the major challenges are accurate alignment
for an object with few geometric features, and maintainance of
sharp textures. The use of image-based alignment improves the
geometric alignment, and maintains sharpness, as illustrated in

Figure 10. Twenty scans, shown textured-mapped with the orig-
inal intensity images in Figure (a), were acquired to cover the
full vase. Figure (b) shows a portion of one of the five captured
intensity images for one of the scanner positions. The acquired
image contains both specific illumination and some noise. The
albedo map obtained from the five calibrated images, mapped
on the corresponding scanned geometry, is shown in Figure (c).
The effects of illumination have been removed, but noise re-
mains. Figure (d) shows the albedo maps reconstructed from
multiple overlapping scans, using geometry-based registration
only. The noise has been damped out by averaging, but the im-
perfect alignment causes ghosting artifacts. The same map after
the image-based registration refinement is shown in Figure (e).
On the 2 to 3 mm thick grapes stems ghosting artifacts are far
less apparent. A photograph of the vase, lit by a small lamp
from the front, is shown in Figure (f). The full reconstructed
vase, lit from the direction of the viewpoint with parallel light,
is rendered in Figure (g). We did not attempt to simulate the di-
rectional characteristics of the small lamp illuminating the vase
in the photograph. The viewing parameters are similar, but not
identical. The 20 scans used comprise a total of 418 thousand
range data points. The final reconstructed model is a 200 thou-
sand triangle mesh. We started with 150 sample points per detail
image. For each scan, we limited the number of matching pairs
used to a maximum of 10 in each region of overlap with another
scan. For this test, the image-based registration required a total
of 115 minutes on a 450MHz Pentium II, using 35MB of mem-
ory and six iterations. Texture reconstruction was completed in
30 minutes.

The clay object is shown in Figure 11. Figures (a) and (b)
show intensity images associated with two scans of the clay. The
two scans have one side of the block in common. The common
side can be identified visually, however the illumination for the
two scans is quite different. For these scans, that show no albedo
variations, detail images were computed from the normals im-
ages. To obtain values that were independent of the coordinate
system, the detail images were computed by taking the dot prod-
uct of the normal at each pixel with the average of normals in
a small neighborhood. The resulting detail images for the two
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Fig. 10. The vase dataset. (a) The twenty scans used to reconstruct the vase. (b) Intensity image captured by the scanner. (c) Computed albedo map. (d) Re-
constructed albedo without image-based registration. (e) Same as (d) with image-based registration. (f) Photograph of the vase. (g) Rendering of a computer
model of the vase reconstructed from the twenty scans.
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scans are shown in Figures (c) and (d). Since the common sur-
face between the two scans is almost flat, ICP did a poor job
aligning the scans, as shown in the result in Figure (e) (lit from
the far left to reveal relief.) Comparing the small features in Fig-
ure (e) with the features apparent in the original intensity images
shows considerable ghosting. Figure (f) shows the result after
the texture alignment. Most of the ghosting has been removed,
and the true features are more clearly defined.

The views required to scan the section of statue in Figure 12
were restricted by its setting shown in Figure (a). The 20 scans
captured are shown in Figure (c). For the statue, the major chal-
lenge is obtaining sharp details in the normals maps that indicate
small toolmarks in the geometry as seen in the black and white
photograph in Figure (b). Figures (d) and (e) show a comparison
of the reconstructed normals maps before and after image-based
registration. Illumination from a glancing angle accentuates the
fine details on the head ornament. The details are clearer after
the image-based registration. The reconstructed model can be
relit using the detail normals and albedo. Figures (f) and (g)
show the statue under two different lighting conditions. The 20
scans used comprise a total of 207 thousand range data points.
The final reconstructed model is a 200 thousand triangle mesh.
As for the vase, we started with 150 sample points per detail
image and limited the number of matching pairs used to a max-
imum of 10 for each pair of overlapping scans. Image-based
alignment of the 20 source scans completed in 148 minutes for
six iterations. Texture reconstruction required an additional 35
minutes.

VII. CONCLUSIONS

We have demonstrated an approach for generating texture
maps for the efficient representation of scanned objects with
high visual quality. We use a novel image-based registration
algorithm that takes into account high-resolution information in
the captured images. The geometric alignment is improved by
matching image structure around automatically selected points.
The refined alignment allows us to reconstruct sharp textures.
Our texture reconstruction approach uses a unique weighting
scheme to combine the best information at each texture pixel
that reduces noise and which eliminates the evidence of any scan
or patch boundaries.

We are considering future work in a number of directions.
We are exploring the interleaving of geometric ICP, image-based
alignment, and line-of-sight error correction in our pipeline. We
conjecture that accounting for line-of-sight errors during align-
ment will produce better registration results. We also seek to
improve our method for generating texture patches. Currently,
we use a relatively simple greedy approach that does not guar-
antee an optimal set of patches.

While three-dimensional scanning is being used with in-
creasing frequency, it remains a relatively expensive and labor-
intensive process. Significant research is required to refine the
entire acquisition and model building pipeline. Focusing on
methods that employ inexpensive hardware to produce high vi-
sual quality will make this technology accessible to a much
broader audience.
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ICP registration (lit from the far left to reveal relief.) (f) Result after the texture alignment. Most of the ghosting has been removed, and the true features are
more clearly defined.
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Fig. 12. (a) Black and white photograph showing the section of statue in Figure 1 in context. (b) Black and white photograph showing a closeup view. (c) The 20
scans used to reconstruct the head. (d), (e) Normal map before and after image-based registration. (f), (g) The reconstructed model of the statue rendered under
two different lighting conditions.


