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Abstract

In this paper we describe a method for creating sharp
features and trim regions on multiresolution subdivision
surfaces along a set of user-defined curves. Operations
such as engraving, embossing, and trimming are important
in many surface modeling applications. Their implementa-
tion, however, is non-trivial due to computational, topologi-
cal, and smoothness constraints that the underlying surface
has to satisfy. The novelty of our work lies in the ability to
create sharp features anywhere on a surface and in the fact
that the resulting representation remains within the mul-
tiresolution subdivision framework. Preserving the origi-
nal representation has the advantage that other operations
applicable to multiresolution subdivision surfaces can sub-
sequently be applied to the edited model. We also introduce
an extended set of subdivision rules for Catmull-Clark sur-
faces that allows the creation of creases along diagonals of
control mesh faces.

1 Introduction
Interactive editing is of great importance for creating ge-

ometric models for a variety of applications, ranging from
mechanical design to movie character creation. Often times,
modeling begins with an existing object on which the user
performs a sequence of editing operations that lead to the
desired shape. Of particular interest are small-scale features
such as engravings and embossed details that are encoun-
tered on many real-life objects.

Traditionally, geometric modeling has relied on non-
uniform rational B-splines (NURBS) for surface design.
However, NURBS have well-known limitations such as
the inability to address arbitrary topology, tedious cross-
boundary continuity management, and difficulty represent-
ing different resolution levels. In addition, editing opera-
tions such as those considered in this paper typically require
features to be aligned with iso-parameter lines or patch
boundaries, or other complex manipulations in parameter
space.
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While techniques such as free-form deformations [19],
wires [20], and procedural modeling [18] offer alternative
ways to edit three-dimensional objects, typically they do
not present a unified representation that includes both the
original surface and the edits. Thus, in many cases, the re-
sulting representation is not the same as the original, but an
extension of it. The main drawback of this approach is that
algorithms that have been developed for the original repre-
sentation are not directly applicable to the result and special
cases may have to be considered.

The past few years have seen considerable advances in
subdivision theory and many common NURBS operations
have been translated into the subdivision setting. Subdivi-
sion theory [22], parametric evaluation [21], and applica-
tions such as interactive editing [23, 12], trimming [15],
boolean operations [2], and geometry compression [11]
have contributed to the increasing popularity of multireso-
lution subdivision surfaces. To date, they have been used
in commercial modelers (e.g., Alias/Wavefront’s Maya,
Pixar’s Renderman, Nichimen’s Mirai, and Micropace’s
Lightwave 3D) and are currently making their way through
in game engines and hardware implementations. Subdi-
vision algorithms are attractive because of their concep-
tual simplicity and efficiency with which they can gener-
ate smooth surfaces starting from arbitrary meshes. Mul-
tiresolution subdivision surfaces offer additional flexibility
by allowing modeling of details at different resolution lev-
els and ensuring that fine-scale edits blend naturally with
coarse shape deformations.

In this paper, we address the problems of feature place-
ment and feature creation by providing a set of tools that
allow fine-scale editing and trimming operations to be ap-
plied anywhere on a surface. We use multiresolution subdi-
vision surfaces as our representation and we ensure that this
representation is preserved after editing. This gives us the
flexibility to integrate our technique with other algorithms
developed for multiresolution subdivision surfaces. In our
implementation, we use a subdivision scheme for quadrilat-
eral meshes, however a similar algorithm can be developed
for triangular meshes. Our contributions include:

1. An algorithm to produce sharp features at arbitrary lo-
cations on a piecewise-smooth multiresolution surface



without remeshing the control mesh. The sharp fea-
tures are created interactively, along curves drawn by
the user on the target surface.

2. An extended set of rules for the Catmull-Clark sub-
division scheme that allow the creation of creases
and boundaries along diagonals of quadrilateral mesh
faces.

3. A unified solution to offsetting and trimming oper-
ations. Using our technique, a sharp crease having
a user-defined profile may be applied along a given
curve. Alternatively, the portion of the surface delim-
ited by the curve can be trimmed off, creating a hole in
the surface.

The remaining sections of the paper are organized as fol-
lows: in section 2 we overview surface modeling methods
and we emphasize the main differences between our ap-
proach and existing techniques. The core of our method
is presented in section 3. In section 4 we present our re-
sults and we illustrate applications. Finally, in section 5 we
summarize our work and we point out open issues.

2 Background and Related Work

Figure 1. Surface editing. Features are added to an ini-
tial surface (left). Smooth and sharp features are funda-
mentally different: smooth features (center) add bumps
to the surface, while sharp features create tangent plane
discontinuities (right).

Figure 2. Smooth surface representations do not cap-
ture sharp features. Multiresolution Catmull-Clark sur-
faces can approximate sharp features by adding detail
coefficients at finer levels (left three pictures). Instead,
we use piecewise-smooth multiresolution surfaces to
exactly represent sharp features without any detail co-
efficients (right).

Subdivision surfaces [1] efficiently represent free-form
surfaces of arbitrary topology. A subdivision surface is de-
fined over an initial control mesh and a subdivision scheme

is used to recursively refine the control mesh by recomput-
ing vertex positions and inserting new vertices according
to certain rules (masks). Recursive subdivision produces a
hierarchy of meshes converging to a smooth limit surface.
Most objects of interests to geometric design, however, are
only piecewise smooth and exhibit sharp creases and cor-
ners. To model them using subdivision, special rules are
needed to avoid smoothing of sharp details (Figure 1 and 2).
Previous work in this area has focused on defining such spe-
cial rules. Hoppe et al. introduce rules to create sharp fea-
tures on subdivision surfaces in [9]. The work of DeRose
et al. [5] extends Hoppe’s approach to achieve creases of
controllable sharpness by using subdivision rules parame-
terized by a sharpness factor. Our work builds upon sub-
division schemes for piecewise-smooth surfaces [3] where
control mesh vertices and edges are tagged in order to gen-
erate singularities, such as creases, darts, and corners. We
also draw upon the curve interpolation work of Nasri [17].
In all of these techniques, there is the common requirement
that features need to be aligned with the edges of the un-
derlying control mesh. Therefore, the control mesh has to
be designed with a particular feature in mind. However, a
designer might want to first model an initial shape and ap-
ply small scale features in later stages of the design. It is
our goal to support this kind of a modeling approach and
to allow features to be placed at arbitrary locations on the
surface.

Multiresolution subdivision surfaces are a natural exten-
sion of subdivision surfaces that accommodates editing of
details at different scales, allowing general shape deforma-
tions as well as the creation of minute features. Multiresolu-
tion, however, does not solve the problem of sharp features
as they can only be placed along edges at discrete locations
in the mesh hierarchy.

Our technique removes this constraint by allowing sharp
features to be created and edited along any user-defined set
of curves on the mesh. The main idea is to view subdivision
surfaces as parametric surfaces defined over the coarsest-
level mesh similar to MAPS [13]. Similar to the approach
in [2] we compute the image of a given curve in the para-
metric domain and we reparameterize the surface to align
the parameterization with the curve on some level of the
multiresolution hierarchy. Subsequently, we apply special
rules to generate non-smooth features.

The closest work to the technique presented in this pa-
per is that of Khodakovsky and Schröder. In [10] they de-
scribe a method for interactive creation of feature curves at
arbitrary locations on a surface. To create a feature along
a curve, a perturbation according to a given profile is ap-
plied in the neighborhood of the curve, while maintaining
smooth boundary conditions. There are no restrictions on
the position of the curve with respect to the underlying sur-
face, however, the representation used is no longer a pure



multiresolution surface. In order to create a sharp feature
with this technique, it is necessary to enforce the feature
profile at each level of the multiresolution hierarchy. Both
the surface and the feature curve are needed to represent the
resulting surface. Thus, one cannot directly use techniques
developed for subdivision surfaces (i.e., evaluation). In our
method, we address the issue of arbitrarily placed sharp fea-
tures within the multiresolution subdivision setting, thus al-
lowing for greater flexibility in combining feature editing
with other existing subdivision tools.

A by-product of our method is the ability to perform
trimming of surfaces by simply discarding the portion of
surface inside a given curve. Trimming is an important de-
sign operation that has been traditionally difficult to per-
form on parametric surfaces. Our work is complemen-
tary to the trimming approach of Litke et al. [15] where
quasi-interpolation is used to approximate a trimmed sur-
face with a combined subdivision surface [14]. Similarly,
quasi-interpolation may be combined with our approach to
obtain trimmed multiresolution surfaces within a specified
tolerance.

3 Feature Editing Algorithm
The input to our feature editing algorithm consists of a

Catmull-Clark [4, 6] multiresolution subdivision surface, a
set of feature curves on the surface, and a user-selected pro-
file to be applied along these curves. The result is a mul-
tiresolution subdivision surface with offset or trim features
along the given curves.

The basic idea is to model sharp features with piecewise-
smooth surfaces. We view feature curves as boundaries be-
tween smooth surface patches. Sharp features occur along
patch boundaries where patches with distinct tangent planes
are joined.

Our multiresolution surface representation enables us to
represent sharp features as boundaries or creases by tagging
the control mesh edges. In general, the creases generated in
this fashion do not coincide with the user specified feature
curves. Moreover, it may not be possible to create topolog-
ically equivalent curves due to the control mesh topology.
Therefore, before we can represent a feature, we need to
change the surface parameterization.

Our algorithm proceeds in two steps: Reparameteriza-
tion and Feature Creation. We first reparameterize the sur-
face by sliding the control mesh along the surface in order to
sample the feature curve with vertices of the mesh. Hence,
we are able to approximate the feature curve by edges or
face diagonals of the control mesh. In the following sub-
division step, we treat these edges and diagonals as creases
in the control mesh, and apply piecewise-smooth subdivi-
sion rules to obtain a surface with a sharp feature. The sur-
face patches on each side of the feature may be controlled

separately. This allows to shape the feature according to a
specified profile. Moreover, for trimming we can discard
the surface on one side of the feature without changing the
surface on the other side.

3.1 Reparameterization
The goal of this step is to align the parameterization of

the given surface with a given feature curve. Recall that a
multiresolution subdivision surface can be naturally param-
eterized over the coarsest level control mesh (Figure 3).

Figure 3. Parametric domain and surface. Multiresolu-
tion subdivision surfaces can be parameterized over the
coarsest level control mesh (left). The subdivision op-
erator maps vertices of the parametric domain to their
image on the surface (right).

Some notation is necessary to describe the reparameter-
ization. Let c denote an input curve defined on the param-
eter domain X of the surface, c : [0, 1] → X . In general,
c traverses the domain X at arbitrary positions. We want to
reparameterize the domain X such that c passes through the
vertices of X . Therefore, we compute a one-to-one map-
ping Π : X → X which maps vertices of X to curve points:
Π(vi) = c(ti), for some vertices {v0, v1, . . . } and curve pa-
rameters {t0, t1, . . . }. The mapping Π is built to satisfy the
following approximation property (AP):

(AP): the piecewise linear curve [v0, v1, . . . ] has the
same topology as c and either follows along mesh edges
or crosses mesh faces diagonally.

The reparameterization algorithm proceeds iteratively,
alternating Snapping and Refinement steps. The snapping
step moves mesh vertices onto the curve if they are suffi-
ciently close. In the refinement step we simply subdivide
the parameterization linearly. The algorithm terminates if
the sequence of vertices {v0, v1, · · · } along c satisfies the
approximation property (AP). Property (AP) is guaranteed
to be satisfied after a finite number of steps for piecewise-
linear curves c. After the reparameterization, the surface is
Resampled to reflect the new parameterization.



Figure 4. Reparameterization matching a feature curve.
The quad is recursively split and vertices are snapped
to the curve. After four subdivision steps, the curve
is approximated by a sequence of mesh vertices: The
approximated curve follows edges or passes through
quads diagonally.

ε

Figure 5. Snapping step. Vertices are snapped to clos-
est curve vertex if the distance is less than a certain ε.
Note that distances are measured in parameter space,
where each face corresponds the unit square. A single
snapping step reparameterizes the neighborhood of the
snapped vertex.

Snapping. This step moves vertices onto the curve c if
they are sufficiently close to it. First, the algorithm traverses
the mesh along the curve on a given subdivision level. For
all vertices of the traversed faces we compute the closest
points on the curve. Distances are measured by param-
eterizing each quad intersected by c over the unit square
and by computing distances to the curve in this parameter
space. This approach presents an advantage over computing
geometric distances in that it does not undersample small
quads. Vertices v within a certain distance ε to the curve
are snapped to the corresponding closest points c(t) on the
curve (see Figures 5 and 4). We assign Π(v) := c(t).

The parameter ε controls the distortion of the reparame-
terization: small values keep vertices from moving too far,
but require more snapping steps. In all cases, ε is less than
0.5 to ensure that the snapping region around each vertex is
disjoint from the snapping regions of its neighbors. In our
examples, we obtained good results with ε = 0.3.

In some cases, it may be necessary to align specific

points in the parameter domain with mesh vertices. This
is the case, for instance, where several curves intersect in
a corner. Due to the chosen surface representation, we
need a mesh vertex at the corner that connects the separate
curve branches. Such constraints are enforced during snap-
ping: constrained curve points have higher priority than un-
constrained points. For a given vertex, the algorithm first
tries to snap to the unmatched constrained vertices. If no
snapping is possible, unconstrained points are considered
as snap targets.

Refinement. The parameterization Π is piecewise lin-
early subdivided to increase the resolution and allow future
snapping. The subdivision is done similarly to [13]. As in
[13], local charts are used to refine the parameterization Π
where neighborhoods are mapped to different faces of the
coarsest level control mesh.

Resampling. After reparameterization, we resample the
surface at the new parameter positions. Intuitively, this
moves the control mesh on the surface and places mesh ver-
tices on the feature curve. With the notation from above, we
iterate over the vertices of the finest level control mesh. For
every vertex v of X , we assign a new position by evaluating
the input surface at parameter position X(v). Finally, we
apply multiresolution analysis to obtain a multiresolution
representation with detail coefficients.

3.2 Feature Creation
The reparameterization step approximates the feature

curves as chains of mesh edges or diagonals and mesh diag-
onals. Our idea is to view these curves as crease or bound-
ary curves in the control mesh. In order to create surfaces
with sharp features, we apply crease subdivision rules along
the feature curves. The shape of the feature can be con-
trolled by offsetting mesh vertices in the feature neighbor-
hood according to a user given profile.

The profiles shown in Figures 14 have been created by
changing the positions of mesh vertices that are close to a
feature curve. Vertices are displaced normal to the surface
and the displacement is determined by their distance to the
curve. Note that for closed curves different shape profiles
may be used for displacing points in the interior and points
on the outside.

Trimming can also be performed by simply interpreting
a feature curve as a boundary of the mesh. The feature
curve cuts the control mesh into separate pieces. Each piece
can be subdivided separately and processed further. The re-
sulting surfaces are independent from each other, moreover,
their boundary curves are cubic B-splines.

3.3 Subdivision Rules for Sharp Features
In this section, we explain how to subdivide control

meshes with feature curves (Figure 6). As in the standard



Figure 6. Subdivision of a control mesh with a feature
curve. The feature curve is a sequence of mesh edges
or mesh diagonals acting as a boundary in the mesh.
The resulting surface consists of two smooth patches
joined along a cubic B-spline boundary. Our subdi-
vision scheme extends piecewise-smooth subdivision
with rules for diagonally split faces.

Catmull-Clark subdivision, we iterate over the mesh on a
given level and we compute positions of the vertices on the
next level by refining the positions of existing vertices (ver-
tex points) and by inserting new vertices on edges (edge
points) and in the faces centers (face points). We apply spe-
cial rules in the vicinity of the curves and standard rules
everywhere else. Our rules extend the piecewise-smooth
subdivision of [3]. The idea is to treat the feature curve as
a crease and to refine the mesh on each side of the curve
independently to create a tangent-plane discontinuity. As
feature curves may pass through quads diagonally, we in-
troduce new rules, that account for such situations.

We use vertex tags to identify the subdivision rules to
be applied when traversing the mesh. Initially, we tag all
vertices traversed by the feature curves as crease vertices.
Additionally, we mark the faces that are cut diagonally by
the curve.
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Vertex points. A refined control point position corre-
sponding to an untagged vertex is computed as a weighted
average of control points in its neighborhood. For a vertex c
with valence k (i.e., with k adjacent polygons), its new posi-

tion ci+1 is a linear combination of its old position weighted
by (1− β − γ) and the positions of the vertices in its 1-ring
each weighted by β/k if situated on an edge incident to c
or by γ/k otherwise. We use coefficients β = 3/(2k) and
γ = 1/(4k).

A special situation occurs when some of the quads in the
1-ring of c are split by a curve (see Figure 7). The previous
rule is modified to ignore vertices that are not on the same
side. We use q′ := pi

0 + pi
k−1 − c.

ci+1 = (1−β−γ)ci+
1
k


βpi

k−1 + γq′ +
k−2∑
j=0

βpi
j + γqi

j




A crease vertex is refined as the average of its old position
with weight 3/4 and the two adjacent crease vertices with
weights equal to 1/8.

Corner vertices (i.e., where two or more creases meet) re-
quire additional rules depending on the neighboring topol-
ogy, similar to our discussion of creases. For the sake of
brevity, we do not include them in this paper. Darts (i.e.,
smooth transitions of a crease into a surface) require no spe-
cial consideration, as the standard rules are directly applica-
ble at such points.

Face points. For faces that are not split diagonally by
crease curves, we insert a point in the centroid of each face.
For faces with a diagonal on the curve, the center point is
computed as the average of the two diagonal endpoints on
the crease.

Edge points. On an edge with both endpoints tagged, we
insert a new vertex as the average of the endpoints. When
both endpoints are untagged, the standard edge mask ap-
plies. The remaining case is that of an edge with one vertex
tagged and the other untagged. A curve passing through a
mesh vertex partitions the mesh in the neighborhood of that
vertex into two sectors. We select the rule to be applied to
an edge point adjacent to a tagged vertex c depending on
the topology of the sectors around the tagged vertex. We
distinguish three types of sectors:

1. Consisting of quads only: in this case the curve fol-
lows two edges incident to c and we can apply the
crease rules described in [3]. This case is illustrated
in Figure 8(a). We choose θk = π/k, where k is the
number of polygons adjacent to c in the sector consid-
ered, and apply an edge rule which is parameterized
by γ = 3/8 − 1/4 cos θk. The new edgepoints pi+1

j

(j = 1, · · · , k − 1) are computed as

pi+1
j = (

3
4
−γ)ci+γpi

j+
1
16

(pi
j−1+pi

j+1+qi
j−1+qi

j).

2. Beginning with a triangle (i.e., a split quad) and end-
ing with a quad or vice versa: in this case the curve
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Figure 8. Special rules for edge points on edges with one endpoint on a curve (gray line). (a) Sector delimited by the
curve consists of quads only: in this case the rules from [3]. (b) Sector begins with a split quad and ends with a full
quad. In this case only pi

0 is on the opposite side of the curve and the only rule that needs to be modified is that for
pi+1
1 . The reflection of ci across the edge (pi

1, q
i
0) is used. (c) Sector begins and ends with quads that are split by the

curve. Points pi
k and pi

0 are on the opposite side of the curve. The rules that would normally take into account these
points to compute pi+1

1 and pi+1
k−1 are modified to use the reflections of the points pi

1 and pi
k across the curve instead.

passes through the vertex following a mesh edge and a
mesh diagonal. This case is illustrated in Figure 8(b).
We use θk as above and apply the same edge rule to
compute pi+1

2 · · · , pi+1
k−1. The edge point pi+1

1 between
the triangle and the first quad is obtained as

p1
i+1 = (

11
16

−γ)ci+(γ+
1
16

)pi
1+

1
16

(pi
2+2qi

0+qi
1).

3. Beginning and ending with triangles: in this case the
curve follows two diagonals incident to c (Figure 8(c)).
We choose θk = k − 1 and apply the edgerule of the
first case to find pi+1

2 , . . . pi+1
k−2. The edge points pi+1

1

between first triangles and quads is computed as

p1
i+1 = (

13
16

−γ)ci+(γ− 1
16

)pi
1+

1
16

(pi
2+2qi

0+qi
1).

The rule for pi+1
k−1 is symmetric to this. In the special

case of k = 2, we use pi+1
1 = 1/4ci+1/2pi

1+1/8(qi
0+

qi
1).

Tangents and normals. Our subdivision scheme has
well-defined limit and tangent properties. We can efficiently
evaluate limit positions of vertices and tangent directions by
applying specific masks [8]. These masks correspond to the
left eigenvectors of the subdivision matrix used at a given
vertex. The masks are listed in appendix A.

3.4 Discussion of the Subdivision Rules
In this section, we briefly discuss some properties of the

previous subdivision rules and we motivate our choice of
the special rules for crease neighborhoods.

As we use cubic B-Spline subdivision along the features,
the resulting curves are B-Splines defined only in terms of
control points along the curves. Moreover, the surfaces on

either side of the feature do not depend on each other. This
is a consequence of our rules, as no stencil uses vertices
from the opposite side of a feature.

Our rules have an easy geometric interpretation (Fig-
ure 8), but some subdivision theory is needed to understand
the rules in more detail. We follow the usual eigen-analysis
approach [6] to understand the asymptotic behavior of the
subdivision operation. Consider a neighborhood of a crease
vertex c as shown in Figure 8(a). Iterated subdivision con-
tracts the neighborhoods to a single point. We want to
ensure a well-shaped limit configuration and design rules
which preserve a specifically chosen configuration. Tech-
nically speaking, we design rules that have certain desired
subdominant eigenvectors (see Appendix A). We use geo-
metric reasoning to reduce the cases of neighborhoods with
triangles to the case of neighborhoods without. The reflec-
tions previously mentioned are chosen to map the desired
eigenvectors to the eigenvectors of the no-triangle case (Fig-
ure 8(a)). Thus, we can design subdivision rules as follows:
(i) apply reflection to complete triangles, (ii) subdivide us-
ing the usual no-triangle rules and (iii) discard the unneces-
sary points. The subdivision scheme defined in this way has
the desired eigenvectors.

For a complete analysis a larger neighborhood and the
corresponding subdivision matrix need to be analyzed. This
is beyond the scope of this paper, and instead, we visualize
here only the asymptotic behavior of the subdivision rules
with illustrations of the characteristic maps (Figure 9).

4 Applications and Results
Figure 13 illustrates the steps of the algorithm for a trim-

ming sequence. The creation of sharp features and trim re-
gions is illustrated in figures Figures 10 and 11. Note the
arbitrary position of the curves with respect to the under-
lying meshes. The models were created interactively on a
Pentium III workstation.



Figure 9. Characteristic map for crease vertex neighbor-
hoods with a single triangle. We show maps for valence
3 (left) and valence 6 (right). The maps show the behav-
ior near the curve vertex. Note that the maps are smooth
and one-to-one.

Figure 14 illustrates the creation of offset features along
a curve according to various user-specified profiles. The
profiles are based on distance to the curve. In general, com-
puting distances on surfaces is a difficult problem [16]. In
our examples (i.e., Figure 14), we measure the distance in
space, which is a reasonable approximation for small dis-
tances on surfaces with low curvature. Alternatively, one
could use geodesic distances on the surface [10].

Also, we use our algorithm to create features on mul-
tiresolution surfaces (Figure 12(a)). Feature curves with
intersections are illustrated in Figures 13 and 12(b).

Finally, we demonstrate how our trimming approach ap-
proximates the result of a precise trimming operation (Fig-
ure 15). It is the nature of our technique that the resulting
surface is different from the input surface (even for a flat
feature profile). The differences are due to resampling and
the use of piecewise-smooth base functions in the feature
neighborhood. Also, the specified feature curves are resam-
pled only at vertices of the control mesh. However, we can
control the approximation by resampling surface and fea-
ture curves at different levels in the hierarchy. In general,
resampling on a finer level reduces the error, but is compu-
tationally more expensive. In our implementation the user
controls the level on which the resampling takes place.

5 Conclusions and Future Work

In this paper we present an efficient method for creating
sharp features along an arbitrarily positioned set of curves
on a Catmull-Clark multiresolution subdivision surface. We
view our surface as a parametric surface defined over the
initial control mesh and we change the parameterization
to align it with the pre-image of the feature curves in the
parameter domain. The result is a surface represented in
the same way as the input surface with the curves passing
through mesh edges or face diagonals. This property allows
us to apply special subdivision rules along the curve to cre-
ate sharp profiles. Another application of this algorithm is
trimming, which can be achieved simply by discarding the
portion of the mesh situated inside the trim curve.

Our algorithm takes as input arbitrarily shaped curves,
with or without self-intersections, as well as multiple inter-
secting curves. The number of curves intersecting at a point,
however, is limited by the number of connections available
between a vertex and its neighbors along edges and diago-
nals (eight in the regular case).

Multiresolution surface representations that allow for
topology changes within the hierarchy [7] could be used to
resolve this restriction in future research. Other research
might combine quasi-interpolation or surface fitting with
our trimming approach and study the approximation along
the lines of [15]. Also, we are interested to see whether the
special diagonal subdivision rules are useful in a general
geometric modeling context. For practical applications, it
might be useful to work out expressions for direct evalua-
tion.

A Eigenvectors
We list the right and left eigenvectors corresponding to the spe-

cial subdivision rules previously described. We denote the domi-
nant left eigenvector by l0 and the left subdominant eigenvectors
by l1 and l2, respectively. We denote the dominant right eigenvec-
tor by x0 and we use x1 and x2 for the right subdominant eigen-
vectors. Recall that the eigenvector coefficients are applied to the
control points of a polygon ring/fan. The eigenvector l0 is used to
compute the limit position of a point, whereas l1 and l2 are neces-
sary for computing the tangents. The crease degree is the number
of polygons adjacent to a crease or corner vertex with respect to
a specific sector. We use the following notation: k denotes the
crease degree of a crease vertex, the subscript c denotes the co-
efficient corresponding to the center vertex, we mark edgepoint
coefficients with the subscript p, and facepoint coefficients with q.
The dominant right eigenvector x0 is the vector consisting of ones.
Unlisted coefficient values are null.

• Sector consisting of quads only. Let θk = π/k.

l0c = 2/3, l0p0 = l0pk = 1/6

For k = 1,

x1
c = 1/18, x1

p0 = −2/18, x1
p1 = −2/18, x1

q0 = −5/18

x2
c = 0, x2

p0 = −1/2, x2
p1 = 1/2, x2

q0 = 0

l1c = 6, l1p0 = −3, l1p1 = −3, l1q0 = 0

l2c = 0, l2p0 = −1, l2p1 = 1, l2q0 = 0

otherwise l2c = x1
c = x2

c = 0 and

x1
pi = cos iθk, x2

pi = sin iθk, i = 0, · · · , k

x1
qi = cos iθk + cos (i + 1)θk, i = 0, · · · , k − 1

x2
qi = sin iθk + sin (i + 1)θk, i = 0, · · · , k − 1

l2p0 = 1/2, l2pk = −1/2

α =
cos θk + 1

k sin θk(3 + cos θk)

l1c = 4α(cos θk − 1), l1p0 = l1pk = −α(1 + 2 cos θk)



Figure 10. Surface editing. Left: surface with user specified feature curves. Closed curves are trim curves, the open
curve indicates an offset feature. Center: image of the feature curves in the parametric domain. Right: resulting
surface with sharp features and trimmed regions. The displacement of the points along the offset curve is a quadratic
function of the distance to the curve.

Figure 11. Surface shaping. A fish pin is cut from a disk using a trim curve along its outer contour and shaped with
offset curves in the interior.

(a) (b)

Figure 12. Left image pair: trim features on multiresolution surfaces. Right image pair: offset features with inter-
sections. The control mesh on the right shows how reparameterization aligns the feature with edges and diagonals.
Mesh vertices are placed at curve intersections.



(a) (b) (c) (d) (e)

Figure 13. Steps of the algorithm. (a) Wireframe rendering of a surface with feature curve. (b) The surface is
parameterized over a cube. (c) Reparameterization aligns mesh edges with the feature. (d) Resampling with respect
to new parameterization. (e) Trimming by discarding a piece of the control mesh and subsequent subdivision.

Figure 14. Different offset profiles for a feature curve. In all three cases, the interior profile is a quadratic function of
the distance to the curve. Left: linear exterior profile. Middle: linear exterior profile; the size of the neighborhood
altered is doubled with respect to the previous image. Right: Gaussian exterior profile.

Figure 15. Trim operations are applied on different levels of the hierarchy. Top row: distance between the resulting
surface and an analytically trimmed surface. Bottom row: corresponding control meshes. The largest error occurs
where the surface boundary does not capture the intended trim curve. The error of surface obtained by trimming on
level 4 is less than 1% (of the length of a base mesh edge).



l1pi =
4 sin iθk

(3 + cos θk)k
, i = 0, · · · , k − 1

l1qi =
(sin iθk + sin (i + 1)θk)

(3 + cos θk)k
, i = 0, · · · , k − 1

• Sector beginning and ending with triangles. Let θk = π/k.

l0c = 2/3, l0pk = l0q0 = 1/6, l1pk = 1/2, l1q0 = −1/2

x1
c = x2

c = 0

x1
pi = cos iθk − θk/2, x2

pi = sin iθk − θk/2, i = 1, · · · , k − 1

x1
qi = cos iθk − θk/2 + cos (i + 1)θk − θk/2, i = 0, · · · , k − 1

x2
qi = sin iθk − θk/2 + sin (i + 1)θk − θk/2, i = 0, · · · , k − 1

l2c = −4 sin (θk/2)

l2pk
= l2q0 =

3(sin2 (θk/2) − 1)

sin (θk/2)

l2pi
= 4 sin (iθk − θk/2), i = 1, · · · , k − 1

l2qi
= sin (iθk − θk/2)+sin ((i + 1)θk − θk/2), i = 1, · · · , k−1

• Sector beginning with triangle, ending with quad.
Let θk = π/(k − 1).

l0c = 2/3, l0pk = l0q0 = 1/6, l1pk = −1/2, l1q0 = 1/2

x1
c = x2

c = 0, x1
q0 = 1, x2

q0 = 0

x1
pi = cos iθk, x2

pi = sin iθk, i = 1, · · · , k

x1
qi = cos iθk + cos (i + 1)θk, i = 1, · · · , k − 1

x2
qi = sin iθk + sin (i + 1)θk, i = 1, · · · , k − 1

α =
1

cos2 θk + k cos θk + 3k − 1

l2c = −4 sin θk

l2pk
= α

sin θk(2 + 5 cos θk − cos2 θk)

2(cos θk − 1)

l2q0 = α
sin θk cos θk(5 + cos θk)

2(cos θk − 1)

l2pi
= 4α sin iθk, l2qi

= α sin iθk+sin (i + 1)θk, i = 1, · · · , k−1
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