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Abstract
We present a method for parameterizing irregularly triangulated input models over polyhedral domains with quadrilat-
eral faces. A combination of center-based clustering techniques is used to generate a partition of the model into regions
suitable for remeshing. Several issues are addressed: the size and shape of the regions, their positioning with respect
to features of the input geometry, and the amount of distortion introduced by approximating each region with a coarse
polygon. Region boundaries are used to define a coarse polygonal mesh which is quadrangulated to obtain a parame-
terization domain. Constraints can be optionally imposed to enforce a strict correspondence between input and output
features. We use the parameterization for multiresolution Catmull-Clark remeshing and we illustrate two applications
that take advantage of the resulting representation: interactive model editing and texture mapping.

1. Introduction

Polygon meshes are often used to represent three-dimensional
models for rendering and computation purposes. Triangle
meshes are common, but quadrilateral meshes are preferred by
some classes of applications. Due to their tensor-product na-
ture, quadrilaterals are favored for use in subdivision schemes
and as parameterization domains for spline-based representa-
tions. They are used in Computer Graphics for surface design
and animation [47] and in Engineering Analysis for finite ele-
ment computations [39].

Meshes with regular or semi-regular (i.e., subdivision) con-
nectivity have proven particularly useful for applications that
require efficient processing of the input data, such as interactive
modeling or compression for storage and transmission. Their
parametric and hierarchical nature makes them ideal for editing
and for encoding shapes at multiple resolutions. In particular,
Catmull-Clark meshes [10] have been successfully included in
commercial modelers such as Maya [1], 3D StudioMax [2], and
Catia [3]. Unfortunately, few meshes generated in practice are
semi-regular and the lack of reliable conversion tools has been
a notable impediment to their widespread use.

In this paper, we propose a novel method for automatic gener-
ation of quadrilateral parameterization domains for arbitrary 2-
manifold triangulations and for computing semi-regular repre-
sentations over these domains. We exploit results from cluster-
ing analysis and optimal quantization theory to segment meshes
into locally congruent patches suitable for quadrangulation.

1.1. Overview and Contributions

Given an input triangle mesh, our technique generates a mul-
tiresolution Catmull-Clark [10] subdivision hierarchy that ap-
proximates it. A coarse control mesh is first computed and
serves as a domain over which the input model is parameterized.
Multiresolution analysis is applied to populate the intermediate
levels of the hierarchy.

Our main contribution is providing an automatic method for
extracting a high-quality quadrilateral parameterization do-
main. The quality is achieved through predominantly regular
connectivity at domain vertices and control over the placement
of faces with respect to the input geometry. Our method oper-
ates directly on the 3D model, requiring no prior parameteriza-
tion. This makes it general and readily applicable to complex
meshes of arbitrary topology. The parameterization domain is
used for multiresolution remeshing. We use a combination of
clustering algorithms to partition the mesh into regions suitable
for remeshing. We introduce a novel way of sparsely sampling
the input model with sites around which the regions are built.
Constraints may be optionally imposed to ensure a strict cor-
respondence between new mesh edges and input elements. The
final result is a hierarchy of progressively finer semi-regular ap-
proximations of the input model.

1.2. Related Work

Considerable literature exists on building high-quality param-
eterizations over triangulated base domains (see [28] for a re-
cent example and references). In contrast, very little work has
been done on deriving quadrilateral base complexes for arbi-
trary meshes. Krishnamurthy and Levoy [30] fit tensor-product
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B-spline patches to irregular meshes. Guskov et al. [21] propose
a scheme for building quad base domains as part of their hybrid
mesh representation. Both methods require some degree of user
intervention in defining the base domain. User-guided param-
eterization facilitates domain conformance to features. How-
ever, for parameterization of entire model databases, automatic
schemes are desirable. Eck et al. [15] describe an automatic
method for fitting B-splines to meshes of arbitrary topology. A
quad base domain is generated indirectly from a triangulated
one by simplification followed by pairing of neighboring trian-
gles. In general, approaches based on mesh simplification suf-
fer from several shortcomings: it is not clear how to determine
when to stop the simplification, geometric error typically drives
the process with little or no control over the resulting topology
and connectivity (see Fig. 9), the simplified mesh is a triangle
mesh for which a quadrilateral decomposition has to be found,
and constraints are difficult to enforce [27]. Generating quadri-
lateral meshes by pairing of triangles (see also 4−8 subdivision
schemes [46]) pose additional problems: complete pairings may
not always exist and finding ones that minimize distortion is ex-
pensive.

In [9] quad semi-regular meshes are obtained by projecting
faces of octree cells onto the input surface. This tends to create
base meshes with a large number of faces, even after cleanup.
Also, there is no control over the placement of faces. Arbitrary
meshes are typically parameterized by cutting and flattening.
An extreme example is the parameterization of an entire mesh
over a square [19]. Maintaining consistency across seams is dif-
ficult, especially if the model is to be modified (e.g., edited,
compressed). In [20] conformal parameterizations of complex
surfaces are computed without cutting. However, the result-
ing parameterizations are highly non-uniform and controlling
them requires manual topology modification. Recent methods
have targeted restricted classes of models. Mappings to either
a sphere [40] or a plane [23] were used to recover quadrilat-
eral meshes for genus 0 models with and without boundary,
respectively. For the latter class, an interesting quad-dominant
anisotropic remeshing method was described in [4]. Techniques
for converting given models to quadrilateral meshes have also
been proposed in the mesh generation community. Advanc-
ing front and packing are among the most common strate-
gies [39, 7]). Typically, the resulting meshes have a large num-
ber of quads and are not suitable as parameterization domains.

Also related to our approach are mesh partitioning methods.
The fuzzy clustering technique of [26] produces patches which
are not homeomorphic to disks and cannot be directly used for
parameterization. Other methods generate disk-like patches ac-
cording to various criteria (e.g., [17, 43, 32, 44]), but no single
method addresses the combination of patch shape, distrortion,
number of neighbors, alignment to features, and constraints.

Surazhsky et al. [45] use centroidal Voronoi tessellations
to generate dense isotropic triangulations. The centroid up-
dates are performed in 2D and require computing local param-
eterizations of model regions. This is a remeshing approach
which does not produce a parameterization domain for the input
model.

2. Basic Concepts

2.1. Problem Definition

Our input representation is a 2-manifold triangle mesh MI of ar-
bitrary topology, possibly with boundaries. Feature curves along
edges of MI may be tagged as constraints. Such curves may be
specified through user input or as a result of an automatic detec-
tion procedure.

Our target representation is a multiresolution subdivision
surface defined by a control mesh hierarchy with L levels
MH0 , · · · ,MHL−1 such that:

1. MH0 is a coarse quadrilateral mesh with a predominant num-
ber of regular control points (i.e., valence 4 in the interior
and valence 2 on the boundary; we define the valence of a
control point as the number of faces adjacent to it).

2. MHL−1 is a fine mesh such that its control points (or alterna-
tively, their projections onto the limit surface of subdivision)
are located on the input mesh MI .

3. Each mesh MHi is obtained from the coarser mesh MHi−1

by applying the Catmull-Clark [10] subdivision rules, for
i = 1, · · · ,L− 1. To accurately capture the input shape, the
positions of control points on each level may be perturbed
from the locations computed by subdivision using multires-
olution detail vectors.

2.2. Method Overview

Our method converts the input to the target representation in
several steps (see Fig. 1):

1. Normal-based clustering: An initial classification of input
mesh faces into approximately flat regions / clusters is ob-
tained through center-based clustering of normals. The shape
of these regions is analyzed. If all satisfy a shape criterion
(see implementation details in section 6), the algorithm pro-
ceeds to step 4 to extract a coarse mesh (this is the case in
Fig. 10).

2. Cluster refinement: In most cases, the initial partition is too
coarse and not all regions have a shape suitable for remesh-
ing. We use this partition to guide the placement of samples
onto the model and we compute a constrained spatial tessel-
lation. The latter leads to a decomposition of the mesh into
smaller, better shaped clusters.

3. Cluster cleanup: At this point most clusters are suitable for
mesh extraction. Due to sparse sampling (see Fig 9) in the
previous stage, some may still fail to satisfy all our shape
constraints. Such clusters are split using local normal and
spatial decompositions.

4. Coarse mesh extraction: Cluster boundaries are used to cre-
ate a polygonal mesh with edges along boundaries and faces
approximating the clusters. Short edges are selectively col-
lapsed to produce a cleaner mesh.

5. Quadrangulation: The coarse polygonal mesh obtained in
the previous step is converted to a quadrilateral mesh which
is used as a base domain over which the input mesh is pa-
rameterized.

6. Resampling and analysis: To obtain the final semi-regular
representation, we adopt a traditional approach for resam-
pling at dyadic positions in parameter space followed by
multiresolution analysis.
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2.3. Data Clustering

Classification is an essential tool for data exploration and anal-
ysis. Clustering (i.e., unsupervised classification) groups items
into distinct clusters based on similarity and proximity met-
rics [25]. Center-based clustering methods stand out for two im-
portant reasons: low complexity and a clearly defined objective
function being minimized. They proceed iteratively, alternating
two steps: (a) computing a Voronoi partition of the data around
a set of centers (i.e., a region is formed around each center such
that data in that region is closer to its center than to any of the
other centers); and (b) updating the centers to better represent
the newly formed regions, until some convergence criterion is
satisfied.

A class of center-based clustering methods known as Cen-
troidal Voronoi Tessellations (CVT) has emerged as offering
many advantages over ordinary Voronoi tessellations [13]. We
focus on their restriction to surfaces embedded in Euclidean
space, the so-called Constrained Centroidal Voronoi Tessel-
lations (CCVT) [14] to create decompositions suitable for
remeshing.

Given a bounded domain Ω⊂Rn and a set of K sample points
{ci}Ki=1 ∈ Ω, the Voronoi partition or tessellation V induced by
{ci}Ki=1 on Ω is defined as:

V = {Vi = {x ∈ Ω : |x− ci|< |x− c j|, j = 1, · · · ,K, j �= i},
i = 1, · · · ,K}

The points {ci}Ki=1 are referred to as generators of the corre-
sponding Voronoi regions Vi.

Definition 1. A centroidal Voronoi tessellation (CVT) is a
Voronoi tessellation in which the centroids (i.e., centers of mass)
of the regions serve as their generators.

CVTs are closely related to statistical clustering algorithms.
For discrete data sets, CVTs can be identified with K-means
clustering methods [13]. This concept can be adapted to produce
CVTs over arbitrary surfaces, by restricting Ω = S ⊂ Rn to be a
compact continuous surface and letting {ci}Ki=1 ∈ S be a set of
sample points on it [14].

Definition 2. A constrained centroidal Voronoi tessellation
(CCVT) is a Voronoi tessellation for which the constrained
mass centroid c∗i of each region Vi serves as its generator. The
constrained mass centroid of a region Vi ∈ S is defined as:

c∗i = argminc∈SFi(c), where Fi(c) =
∫
Vi

ρ(x)|x− c|2dx

where ρ(x) is a given density function over Ω. For the pur-
pose of surface decomposition, we note several key properties
(see [13, 14, 37] for details):

(P1) For Ω ⊂ R2, the average number of Voronoi edges per
Voronoi region does not exceed six.

(P2) For Ω ⊂ R2, CVT Voronoi regions become locally con-
gruent hexagons as the number of generators increases.

(P3) The computation of the CCVT is based on Euclidean dis-
tances between points, which makes it considerably more ef-
ficient in practice than the geodesic distance-based CVT.

(P4) The vector defined by the center of mass of a region and
its constrained centroid c∗i is normal to S at c∗i (i.e., c∗i is the
projection of the center of mass onto the surface along normal
direction).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Main steps: (a) Input. (b) Variation of normals across
the model. (c) Normal-based clustering and initial placement of
generators (black dots). (d) Final partition after spatial-based
clustering (using the generators from (c)) and cluster refine-
ment. (e) Coarse polyhedral approximation extracted from the
partition in (d). (f) Quadrangulated coarse mesh. (g)-(h) Coars-
est and finest levels of a Catmull-Clark hierarchy with 3 lev-
els obtained after resampling and multiresolution analysis. (i)
Finest level smooth shaded.

(P2) stems from Gersho’s conjecture [18], a more general re-
sult in quantization theory. It states that, as the number of gen-
erators increases, the regions of an optimal quantizer are locally
congruent polytopes in Rn. For planar domains, the conjecture
was proven and the optimal polytope is the regular hexagon.

Our key idea is to segment a given 2-manifold into regions
of reduced normal variation (i.e., almost flat) and to perform
CCVT starting from generators placed in these regions. This al-
lows us to exploit (P1) and (P2) over the model to obtain a pre-
dominantly hexagonal partition from which a quad-dominant
mesh can be extracted (see Fig. 2a, b). Furthermore, (P3) and
(P4) allow us to do so efficiently using Euclidean distance com-
putations and observing that the CCVT of an almost flat region
reduces to a CVT in Euclidean space. Thus, we can detect re-
gions of reduced normal variation and we can compute cen-
troidal partitions without having to perform expensive centroid
projections onto the mesh.

The remaining definitions pertain to quadrangulations of spa-
tial polygons (see [35]).
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(a) (b) (c)

Figure 2: (a) CVT partitions of a planar mesh starting with ran-
domly placed generators. Left: initial generators (red points).
Right: mesh partition and final positions of the generators
(black points). Top to bottom: 9, 49, and 100 generators. (b)
A quad mesh with regular connectivity is obtained by quadran-
gulating a regular hexagonal mesh. (c) Region sampling cf. Al-
gorithm 2; red points indicate selected samples.

Definition 3. A conformal decomposition of a polygon is a par-
tition of its enclosed area into strictly convex quadrilaterals (i.e.,
with all interior angles less than π), such that any two quads
that share more than one point share exactly one edge. If the
quadrilaterals are all convex, but not strictly convex, we call the
decomposition quasi-conformal.

Definition 4. A perfect decomposition is a (quasi-)conformal
decomposition with no internal vertices.

Definition 5. A partial (quasi-)conformal decomposition is a
(quasi-)conformal decomposition in which all but one face are
quadrilaterals.

3. Center-Based Parameterization

In this section we describe the process of extracting a coarse
polyhedral approximation for a given input mesh. First, normal-
based and spatial clustering methods are combined to produce
a global partition of the input mesh. The resulting regions are
further refined to satisfy shape and flatness requirements using
intra-region clustering.

For clustering, we associate a data item (e.g., normal or lo-
cation information) with each triangular face of the input mesh.
We compute centroidal decompositions based on the data items
using discrete versions of the methods defined in section 2.3 in
a MacQueen-type approach [34]:

Algorithm 1 (center-based clustering of mesh faces):

Given an input mesh M with F faces,
per-face data items {df }Ff=1,
and an initial set of K generator items {ci}Ki=1:
Repeat

For each face f of M do
1. Find ci∗ among {ci}Ki=1 closest to d f
2. j = Label( f ), Label( f ) = i∗
3. ci∗ ← (|Ci∗ |ci∗ +d f )/(|Ci∗ |+1),

c j← (|Cj|c j− d f )/(|Cj |− 1),
until (convergence)
(|C| denotes the number of faces of cluster C; the label of
each face is the index of the cluster to which it belongs)

A mesh partition is suitable for remeshing if it satisfies the fol-
lowing requirements:

(R1) Each region is homeomorphic to a disk.
(R2) The closed piecewise linear curve defining the boundary
of each region can be approximated within some tolerance by
a convex polygon.

(R3) For each region there exists a direction
−→
h in space such

that the corresponding geometry defines a height-field along−→
h and can be approximated within some tolerance by a plane
perpendicular to

−→
h .

(R1) is needed if mesh faces are to correspond to regions and
(R2) ensures that they are well-shaped. (R3) is a stricter require-
ment than necessary. It would be possible for a face to subtend
geometry which is not a height field over that face. A mapping-
dependent distortion is likely to be introduced when the mesh
geometry is parameterized onto the face. To reduce the amount
of distortion and to avoid resampling problems, we enforce (R3)
(see also our texture-mapping requirements in section 6).

3.1. Normal-Based Clustering

Since we would like coarse mesh faces to correspond to rela-
tively flat regions of the input mesh, we begin with a first pass
which identifies flat regions. Face normals are computed and
Algorithm 1 is applied with df = normal( f ), for all input faces
f . The initial generators are chosen to be a small fixed subset of
the set of all possible unit normal vectors (those pointing from
the origin to the vertices, mid-edges, and face centers of a cube
centered at the origin). To reduce the influence of geometry dis-
cretization, the normals are smoothed prior to classification. The
result is a partition PN of the input mesh into regions of re-
duced normal variation. This process is illustrated in Fig. 1b.
The variation of normals over the heart model is shown using a
linear mapping of normal vector components to RGB color. The
resulting mesh decomposition is shown in Fig. 1c.

For smooth, relatively simple shapes, PN has nice regions
which are suitable for remeshing (Fig. 10). However, this can-
not be guaranteed. Since only a small number of regions are
generated at this step, we can quickly check if all of them can
be approximated by convex polygons. If this is not the case, we
use the resulting decomposition for further refinement, as de-
scribed next. In the interest of clarity, we defer the description
of the shape check to section 6.

3.2. Cluster Refinement

In contrast to the normal-based partitioning scheme just de-
scribed, spatial CCVT-type decompositions of the mesh are
guaranteed to produce almost circular regions centered around
their generators. The main issue to be addressed is choosing the
number of generators and their initial locations.

Random sampling. A common strategy to select initial gen-
erators is to place random samples over the mesh. Two things
must be specified: the number of samples and their distribution.
For our problem, it is difficult to estimate in advance how many
generators to use: too many lead to base meshes with many
faces, whereas too few fail to properly represent the input. Given
a number of samples, their placement can be controlled using
Monte Carlo methods or an error diffusion strategy [5], both of
which can be computationally expensive for arbitrary models.
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Region-based sampling. As an alternative, we use PN to esti-
mate both the number of generators needed and their initial lo-
cations. Since regions ofPN correspond to relatively flat model
parts, the idea is to produce a refined decomposition in which
clusters are centered on such flat spots. Ideally, we want to place
samples along the medial axis of each region. In practice, we
use the following heuristic method to avoid medial axis compu-
tation:

Algorithm 2 (region sampling):

Given a mesh region R with FR faces:
1. Identify the set of boundary faces B
2. Uniformly distribute a set SR of N random samples on R\B
3. Select sample s1 ∈ SR with the largest minimum distance to B
4. for i = 2, · · · ,N do

5. Select si ∈ SR farthest from s1, · · · , si−1
6. Retain N0 of the N selected samples

We exclude faces on the boundary of the region to keep the
samples in its interior (Fig. 2c). Similar to [26], we consider
the function defined by the minimum distance of a sample from
previously selected samples. The value of N0 is chosen to max-
imize the first derivative of this function (see implementation
details in section 6). The set of sample points used as generators
for the entire model is the union of the region samples.

Spatial partitioning. After generators have been placed on
the mesh according to Algorithm 2, the initial partition PN is
discarded (i.e., we use the global normal-based partition only
for automatic placement of generators). A new partition PS
is computed with Algorithm 1, this time based on spatial in-
formation. We classify mesh faces according to their proxim-
ity (measured using Euclidean distance) to generators. We use
d f = barycenter( f ), for all input faces f .

(a) (b)

Figure 3: (a) Shape test: the boundary of the red region is ap-
proximated with a polygon with vertices at points where 3 or
more clusters meet. Left: ABCD is not a good approximation
for the red region. Right: ABCD is an acceptable approxima-
tion as it passes both the convexity and distance-to-region tests.
(b) Mapping of a quad corner to a right triangle.

3.3. Cluster Cleanup

By construction, clusters obtained after the refinement stage are
isotropic, almost circular in shape. If the generators are suffi-
ciently dense, (R1) is guaranteed to be satisfied by all clus-
ters [6]. However, since we use sparse generator sets, some clus-
ters may not conform to (R1) (see Fig. 9)a. The purpose of the
cleanup phase is to enforce (R1), (R2), and (R3) on all clusters.
For this, we treat the geometry of each region of PS individu-
ally. The height-field condition (R3) is checked first and if vi-
olated, the region is split using normal-based clustering. If any

of the resulting subregions does not satisfy (R1) or (R2), the
subregion is further split using spatial clustering. The normal-
based split guarantees that the resulting regions are height fields.
Subsequent spatial decompositions ensure that each height field
is decomposed into regions with disk-topology and of approxi-
mately circular shape. Fig. 1d shows the final decomposition of
the heart model.

3.4. Coarse Mesh Extraction

Having found a partition of the input model that satisfies all of
our requirements, the algorithm proceeds to generate a coarse
mesh corresponding to it. Mesh vertices are placed at the points
where three or more regions meet (empty space counts as a re-
gion when boundaries are present in the input mesh). Bound-
aries between regions define the edges of the coarse mesh.
Edges due to discretization errors during clustering are col-
lapsed (Fig. 10c). The result of this step is illustrated in Fig. 1e
and Fig. 10d.

4. Resampling and Multiresolution Analysis

Having found a coarse polygon mesh MB that approximates the
input model, we build a Catmull-Clark multiresolution repre-
sentation by parameterizing the model over MB.

4.1. Polygonal Mesh Quadrangulation

The faces of MB correspond to regions that satisfy requirements
(R1)-(R3). Also, according to (P2), many faces are hexago-
nal. Brute-force application of a Catmull-Clark subdivision step
leads to a quadrilateral mesh with a high number of irregular
(valence 6) vertices. Such meshes are not desirable in practice.
Instead, we aim to find a minimum perfect conformal decom-
position by splitting faces into quads along face diagonals. For
a regular hexagonal mesh, this strategy leads to a quadrilateral
mesh with regular connectivity (Fig. 2b).

In general, the coarse mesh has faces other than hexagonal. A
polygon admits a conformal decomposition if and only if it has
an even number of vertices, but the problem of finding a mini-
mum such decomposition for a polygon mesh is NP-hard [35].
However, since the faces of MB are convex polygons by con-
struction, we can always find a partial quasi-conformal decom-
position as follows: split each face with 2k edges into k− 1
quads; split each face with 2k + 1 edges into k− 1 quads and
1 triangle. We apply the decomposition recursively: first we
find the quad with the lowest shape number (see section 6) that
shares an edge with the face being quadrangulated, then we re-
peat the process for the remaining portion of the face. The de-
composition is also perfect, as no Steiner points are introduced.

This leads to a mesh consisting of predominantly quadrilat-
eral faces (since the starting mesh was predominantly hexago-
nal) and a small number of triangular faces. One step of sub-
division leads to a quadrilateral base mesh with a predominant
number of regular vertices. Let MH0 denote the quad mesh after
one step of subdivision.

4.2. Resampling

MH0 becomes a parameterization domain for the input model.
To generate a remeshed version, we resample its surface at
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dyadic parametric positions. Our resampling procedure follows
a normal-based / closest-point approach [31]. By construction,
input mesh regions are height-fields over the corresponding
faces of MB and the vertices of MB lie on the input mesh. This
makes our resampling procedure more robust than general re-
sampling scenarios, in which a mesh is resampled over an arbi-
trarily simplified domain.

To produce a hierarchy with subdivision connectivity, we
subdivide MH0 to the desired number of levels L and compute
data on each level by resampling. We use Catmull-Clark subdi-
vision combined with a progressive resampling strategy, which
gives us the chance to optimize intermediate meshes before pro-
ceeding with resampling at finer resolutions:

Algorithm 3 (progressive resampling):

Given an input mesh MI and a coarse mesh MH0 :
1. M′

H0
= project(MH0 , MI)

2. M′′
H0

= regularize(M′
H0

)
3. for l = 0, · · · ,L− 2 do

4. MHl+1 = subdivideOnce(M′′
Hl

)
5. M′

Hl+1
= project(MHl+1 , MI)

6. M′′
Hl+1

= regularize(M′
Hl+1

)
7. MHL−1 = project(M′′

HL−1
)

8. Perform multiresolution analysis starting from MHL−1 ,
updating MHl−2 , · · · ,MH0 and computing details

subdivideOnce() accomplishes the refinement of the current
mesh with one step of Catmull-Clark subdivision. The actual
resampling is done in project() by iterating over the vertices of
the current mesh and projecting them onto the input mesh. The
placement of vertices after projection is optimized through a
small number of Laplacian smoothing steps in regularize(). To
prevent vertices from straying too far from the input mesh dur-
ing regularization, we adjust their positions using only the tan-
gential component of the Laplacian [36]. The final projection of
step 7 ensures that the control points of the finest control mesh
(or alternatively, their limit positions) lie on the input mesh.

4.3. Multiresolution Analysis

The applicability of multiresolution analysis to processing of
meshes was established by [33, 48, 41]. The basic idea is that,
at different resolutions, multiresolution details capture different
spatial frequencies of a 3D model. Our method uses a traditional
iterative approach for multiscale analysis ([47]). Starting with
the finest level mesh MHL−1 we alternate two steps: (a) a restric-
tion operation in which control points of MHl−1 are computed
from those of MHl ; and (b) a detail computation step in which
details on level l are computed as the difference between control
point positions of MHl and the positions obtained by subdivid-
ing MHl−1 . The details are 3D vectors expressed in local frames
on each level.

5. Constrained Parameterization

By design, our method builds a coarse mesh with faces cor-
responding to relatively flat regions of the input model. How-
ever, subsequent processing steps (regularization, in particular)
slightly perturb the alignment to features. In many instances,

this is not an issue as perturbations are small and multiresolu-
tion details can be used to approximate features. However, for
some models or applications it is desirable to guarantee an ex-
act correspondence between input and output features. This is
useful for reproducing sharp features or ensuring that resulting
mesh edges follow designated paths.

Our remeshing framework supports constraints in the form of
closed curves along edges of the input model. They can be user-
defined or the result of automatic detection [24]. Edges along
feature curves are tagged and receive special handling in various
stages of the remeshing procedure, as outlined next.

Clustering. Clusters are clipped to feature curves. In the
cleanup stage, regions that are intersected by feature curves are
first split into subregions. Starting with faces along a curve, we
distinguish between faces inside the curve and faces outside it.
For each of the two types, we run a region growing algorithm
inside the current cluster which yields a partition of the cluster
into regions that are completely inside or completely outside a
feature curve. These regions may undergo further refinement, as
described in section 3.3.

Polygonal mesh extraction. Coarse mesh edges correspond-
ing to cluster boundaries along constraint curves are tagged. We
also tag vertices along tagged edges so that during simplifica-
tion, tagged vertices on untagged short edges being collapsed
stay fixed. Fig. 10b-d illustrates the steps of extracting a polyg-
onal mesh with tags (shown in red) and its constrained simplifi-
cation.

Resampling. Data at subdivided locations along tagged coarse
mesh edges is resampled from the corresponding feature curves
by arc length parameterization. During regularization, tagged
control points remain fixed.

Fig. 6 and 10 show a number of remeshing results with
constraints. For open meshes, boundaries are automatically de-
tected and treated as constraints. Resampling boundaries from
the original boundary curves gives better quality approxima-
tions and is more robust than normal shooting approaches which
require a virtual extension of boundary faces to infinity [31].

6. Implementation and Results

Discussion Several parameterization examples are illustrated
in Fig. 5-8 and 10-12. Fig. 6 and 10 show results for meshes
with and without boundaries, as well as with interior sharp fea-
tures. Constraint curves are shown in red. Among the models
illustrated, those of Fig. 10 are the only ones that passed the
shape test after normal-based clustering. All other models were
subject to the full clustering pipeline.

Basic geometric shapes are included for comparison with
“expected" subjective partitions a human would perform. The
woman preparing beer in Fig. 5 and the oil lamp in Fig. 11
offer examples at the opposite spectrum of complexity: they
have higher genus and a number of challenging geometric fea-
tures, such as high-curvature areas and thin walls which require
a good alignment between the model and the coarse parame-
terization domain. We have also included the two models of
Fig. 7 and Fig. 8 as they have been previously used in remesh-
ing literature. Note how the base mesh for the bunny follows
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heart bunny woman pharaoh

Size:

# F 7,412 71,040 112,478 315,462
# CF 173 155 219 71

Quality:

HD 0.01 0.02 0.008 0.008

RV 0.9994 0.9981 0.9991 0.9990

HS

Hν

Table 1: Quality statistics: # F = number of input faces; # CF =
number of coarse faces extracted with our method (before quad-
rangulation); HD = Hausdorff distance between input mesh and
MH3 (4th subdivision level); RV = VMH3

/VI = ratio of output
mesh volume (MH3 ) to the input mesh volume;HS = histogram
of face shape numbers for the quad base mesh MH0; Hν = his-
togram of vertex valences for MH0 .

its features. Although our spatial decomposition is isotropic
in nature, anisotropic elements are generated (especially along
tubular features such as ears and limbs), due to intra-region
normal-based clustering. Our method also produces nearly reg-
ular patches with few extraordinary vertices even in difficult re-
gions, such as around the tail of the cow (for comparison see the
remeshing of the same model in [40]).

Figure 4: Color-coded visualization of the face shape numbers
across several models (green corresponds to square shapes;
gradation to red quantifies deviation from square).

Performance statistics We evaluate the quality of our output
meshes using four different measures:

Hausdorff distance: provides a numerical estimate of the max-
imum distance between two meshes as the largest of two di-
rected max-min distances from each mesh to the other. We
use Metro [11] to report the results as a percentage of the
mesh bounding box diagonal.

Volume ratio: quantifies the change in volume after remeshing
(closed meshes only). It is defined as the ratio between the

volume of the finest-level Catmull-Clark control mesh and
that of the original.

Face shape distribution: characterizes the deviation of
remeshed faces from a square. We plot a histogram of face
shape measures for the faces of the base mesh. With the no-
tations of Fig. 3b, we quantify the deviation of a 3D quadri-
lateral mesh face (pi, p j, p j+1, p j+2) from a square by con-
sidering the affine mapping of the triangle (pi, p j, p j+2) to
the right triangle with unit-length legs (O,q1,q2). As pointed
out in [22, 43], the singular values of the Jacobian of this map
characterize the local distortion between the right triangle and
its 3D counterpart. We use the ratio of the singular values,
i.e., the condition number of the Jacobian, as our shape mea-
sure. Simple calculations give K(J) = (|pj− pi|2 + |p j+2−
pi|2)/(2A), where A is the area of (pi, p j, p j+2). We define
the shape number S of a quadrilateral face as the average of
the four condition numbers at its vertices, normalized so that
the shape number of a square equals 1.

Valence distribution: characterizes the regularity of the base
mesh.

Table 1 shows results for remeshed models with 4 levels of
subdivision. The histograms confirm the quality of the base
meshes, with a majority of well-shaped, almost square faces
(shape numbers close to 1), a high percentage of regular ver-
tices, and no highly irregular ones (valence 10 or higher). Face
shape variation is also illustrated in Fig. 4.

In contrast, Fig. 9 illustrates the problems that would be en-
countered if a naive simplify-and-pair approach were used in-
stead of our method. We used the QSlim software [16] to gener-
ate simplified meshes for some of the same objects we remeshed
with our method (tubular shape in Fig. 9a and the pipes and
chess model in Fig. 10). We set a target number of faces equal
to double the number of base faces retrieved by our approach
(assuming that subsequent face pairing would be applied to pro-
duce a quad mesh). In addition to poor face shape and connec-
tivity quality, the lack of topological guarantees leads to non-
manifold results and features such as boundaries are not pre-
served.

Regarding time complexity, Algorithm 1 runs linearly
through the input mesh faces and, for each face, through the
set of generators. Algorithm 2 is also linear in the number of
faces in each region. Algorithm 3 is the bottleneck of the com-
putation, as it requires repeated resampling of the input mesh
over the various levels of the new hierarchy. To speed it up, we
use a uniform grid approach as in [11] which gives reasonable
results. For larger models, additional speedup of the pipeline
is obtained by using two different versions of the input model:
a medium resolution for base mesh extraction (i.e., to recover
coarse shape), and a full resolution for resampling (i.e., to re-
cover high-frequency details). In our tests, running times for the
extraction of quadrilateral parameterization domains (i.e., steps
1-5) ranged from 6 to 40 seconds. Typical resampling times ran
between a few seconds and 25 minutes for 4 levels of subdivi-
sion. The measurements were performed on a Pentium 4 3GHz
PC with 2GB of RAM.

Implementation details Our method has several parameters
which can be set with default values. We briefly describe our
choices. We use a simple check to decide whether a region ob-
tained by clustering satisfies (R2). We apply this check follow-
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Figure 5: Statuette of a woman preparing beer. Top: input
model (left) and Catmull-Clark remesh (right) rendered with
detailed normals. Bottom: detail of the two meshes (thick lines
indicate coarse patches).

ing normal-based clustering, to regions that are relatively flat,
so it makes sense to measure the convexity of their boundaries.
A coarse polygon is defined for each cluster with vertices at
the confluence of three or more clusters (A,B,C,D in Fig. 3a).
A polygon is considered convex if each of its interior angles
is at most π. If a polygon is found to be convex, we then con-
sider how well it approximates the boundary of the region. For
this, we measure the maximum distance between points along
the boundary curves and the corresponding coarse lines approx-
imating them. For example, in Fig. 3a left, the distance between
the curve segment (AB) along the boundary of the red region
to the line segment (AB) is significant. In this case, (ABCD)
is not an acceptable approximation for the red region. In the
right image the edges of (ABCD) are within an acceptable tol-
erance from the corresponding curves and the approximation is
acceptable. Since clusters are groups of faces, boundaries be-
tween them may appear jagged (a face equidistant from two
generators is arbitrarily categorized in one of the corresponding
clusters). We define the approximation tolerance as a constant
times the average edge length in the cluster and we ignore such
jaggedness in shape testing.

To check (R3), we compute the average normal of a region
−→
h

and we test for the deviation of face normals from it. We also
compute a plane perpendicular to

−→
h that passes through the

center of the bounding box of the region. The region passes the
test if the maximum distance from region vertices to this plane
is within some tolerance (5% of the bounding box diagonal). In
practice, we observed this latter test to be rarely needed, due to
the way regions are created (normal-based clustering first).

We use a fixed number of Laplacian smoothing iterations on
the normal field prior to clustering to attenuate noise. The de-
fault number in our implementation is 10, however this value
should be increased for very noisy data. A simple test checking

Figure 6: Parameterization of a mesh with boundary. Left: input
model. Right: Catmull-Clark remesh (thick lines indicate coarse
patches).

if any faces have chnaged clusters during an iteration is used
as a stopping criterion in center-based clustering. This is com-
bined with a limit on the number of iterations to deal with cases
when a face on the border between two clusters flips back and
forth between them. We used a limit of 50 iterations for all our
tests. Typical number of iterations to convergence for our mod-
els were less than 10. For random sampling according to Al-
gorithm 2, we followed the following strategy: uniformly dis-
tribute [38] a large number of samples over the region (we use
FR/2 samples) and of these select N = FR/4 using a farthest-first
approach; N0 of the N samples are kept, where N0 is the index
of the sample for which the largest jump in the maxmin distance
is observed [26]. After coarse mesh extraction edges are se-
lectively simplified. We identify edges that are almost collinear
with an adjacent edge and can be collapsed without causing de-
generacy of the adjacent faces. Fig 10 (c) and (d) show a coarse
mesh before and after such simplification.

Applications Scanning/editing. 3D scanning systems can pro-
duce highly detailed geometric models of existing objects. Most
systems produce point clouds or triangle meshes derived from
point clouds. While these are convenient for viewing, operating
directly on the detailed point sets or triangles is cumbersome
when modifications are required. Conversion to multiresolu-
tion semi-regular representations provides access to editing and
compression tools not available for the input mesh. In Fig. 12 we
illustrate a high-resolution scan of a pharaoh’s head for which
different restorations of the nose have to be studied. We use a
free-form variational editing tool (similar to [29]) to reconstruct
the nose interactively. The user can smoothly deform the shape
while preserving the Catmull-Clark connectivity. Many possi-
bilities can be generated and evaluated quickly.

Texture mapping. Many models also have associated color
and normal information (in some cases, at higher resolution than
the geometry [42]). Colors and detailed normals can be conve-
niently stored in texture maps. Because the faces of our param-
eterization domain correspond to height-field regions of the ob-
ject, they can be readily used as partitions for texture mapping.
We define an orthogonal camera for computing texture coordi-
nates for each partition by generating a view direction equal to
the average surface normal and a bounding box of the region
aligned with the view vector. For scanned models for which
images are captured together with geometry, it is important to
be able to recompute textures from new viewpoints [8] without
flattening the model. This has been an important motivation for
enforcing (R3). To avoid seams when texture maps are down-
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sized, we expand the area covered by each map [43]. By design,
each of the regions represented by the base mesh polygons is
nearly square, and the individual texture maps pack efficiently
into a single map. In Fig. 5 and 12, we use color and normal
texture maps. The normal maps provide the appearance of de-
tail when coarser meshes are used for rendering [12]. Because
our remeshing follows surface features, they can be used to vi-
sualize the model with little distortion even when a very coarse
level mesh is used in rendering.

Figure 7: Top: input model and detail of the complex geome-
try around the tail; bottom: Catmull-Clark result and tail detail
(control mesh shown on 3rd subdivision level; coarse patches
are shown with thick lines)

(a) (b)

(c) (d)

Figure 8: (a) Input model. (b) Catmull-Clark result. (c) Model
with patch outlines superimposed. (d) Model obtained after re-
moving high-frequency details from the multiresolution hierar-
chy.

Limitations of the approach Spatial center-based clustering
leads to isotropic decompositions of the input geometry. When
combined with normal-based partitioning, some anisotropy is
introduced. However, our method does not provide support for
systematically orienting clusters according to a direction field
defined over the surface. This would be a natural next step and
we plan to explore it in the future. Also, it would be useful to
handle additional types of constraints, such as points and arbi-
trary curves that are not aligned with mesh edges.

(a) (b)

Figure 9: (a) Region generation on an undersampled portion
of geometry (from top to bottom): input geometry with 2 sam-
ples (shown in red); isotropic clustering produces a partition
which does not satisfy (R1)–(R3); intra-region split after cluster
cleanup; base domain (8 faces) extracted from the resulting par-
tition; domain with 16 triangle faces obtained by QEM simpli-
fication shown for comparison. (b) Additional QEM-simplified
meshes of the pipes and chess models in Fig. 10 suffer from
topological degeneracy (red outlines) and are not suitable as
parameterization domains.

7. Conclusions and Future Work

In this paper we introduced a novel method for computing high-
quality parameterizations of triangulated manifolds over quadri-
lateral domains. The creation of the base domain is performed
through a combination of clustering methods which control the
shape and flatness of clusters. The result is a smooth param-
eterization with nicely-shaped patches and low distortion. Our
method also offers a completely automated way to convert com-
plex triangle meshes to Catmull-Clark multiresolution represen-
tations for subsequent processing (e.g., editing, texture map-
ping, compression). Such conversions are particularly useful in
the context of libraries of models or parts which require quick
editing, filtering, or other forms of geometric processing im-
practical to perform on the original data.

This work opens interesting possibilities for further explo-
ration. Building anisotropic domains according to given direc-
tion fields is a natural next step. Another challenge is to use
our constrained parameterization approach to generate maps be-
tween different models of similar shape with correspondence
between features.
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(a) (b) (c) (d) (e)

Figure 10: (a) Quadrilateral parameterization of simple shapes. (b)-(e) Parameterization of chess piece over domain extracted after
normal-based clustering. Constraint curves and edges are shown in red.

Figure 11: Oil lamp. From left to right: input model; Catmull-Clark hierarchy with 3 levels; zoom-in sequence illustrating a detail of
the mesh before and after remeshing.

Figure 12: Left to right: Triangulated pharaoh model. Quadrilateral patches corresponding to a parameterization domain generated
with our method. Control meshes on the 3rd and 4th levels of a Catmull-Clark hierarchy built over this domain. Restoration of the
broken nose through multiresolution editing of the semi-regular model. Shaded images are rendered with detailed normals from the
input data set.
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