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Abstract

This paper describes a method for converting an arbitrary mesh with irregular connectivity to a semi-regular
multiresolution representation. A shape image encoding geometric and differential properties of the input model is
computed. Standard image processing operations lead to an initial decomposition of the model that conforms to its
salient features. A triangulation step performed on the resulting partition in image space, followed by resampling
and multiresolution analysis in object space, complete the procedure. The conversion technique is automatic,
takes into account surface properties for deriving a base domain, and is computationally efficient as the bulk
of the processing is carried out in image space. Besides domain decomposition, our image-based approach to
handling geometry may be used in the context of related applications, including model simplification, remeshing,
and wireframe generation.
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1. Introduction

Representing surfaces through subdivision elegantly ad-
dresses many of the drawbacks of unstructured 3D shape
representations. Subdivision offers a compact way to rep-
resent geometry with minimal connectivity information. It
generalizes the classical spline patch approach to arbitrary
topology, naturally accommodates multiple levels of detail,
and produces meshes with almost regular structure, suitable
for digital processing. When combined with multiresolution
analysis, subdivision offers a powerful modeling tool, allow-
ing for complex editing operations to be applied efficiently
at different resolutions 41.

The set of tools for manipulating subdivision surfaces has
grown steadily in recent years. The main obstacle to their
widespread use is having to convert existing data to this for-
mat. We focus our attention on the conversion of irregular tri-
angulated meshes to multiresolution subdivision hierarchies.
The task of converting an arbitrary mesh to a semi-regular
hierarchical representation can be viewed as consisting of
three main steps: (a) finding a suitable parameterization do-
main for the input shape, preferably taking into account its
salient features, (b) resampling the original data at dyadic
positions over the newly found domain, and (c) applying

multiresolution analysis to generate a hierarchy. This paper
focuses on challenges posed by the first step: finding a base
domain. We use established algorithms for resampling and
multiresolution analysis.

We propose an image-based approach to domain decom-
position. Recent work 16 has demonstrated the ability to cut
and parameterize an entire mesh onto a single 2D image that
captures the input geometry into a completely regular struc-
ture. Shape descriptors such as normals and curvatures can
be encoded into similar images. We cast the complex task
of partitioning an arbitrary 2-manifold input mesh into the
simpler one of segmenting its shape image. Subsequently,
we use the inverse mapping from the image to the mesh to
obtain a partition of the latter. Based on this decomposition,
we generate a coarse base domain over which we perform
resampling and analysis.

Storing meshes into completely regular structures offers
advantages in terms of efficiency for rendering and net-
work transmission. Nevertheless, for certain applications
like modeling and design, working with such a representa-
tion appears non-intuitive as the shape being modeled is dis-
torted by flattening. For instance, it would be rather difficult
to interactively locate and consistently update model fea-
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(a) (b)

(c) (d)

Figure 1: (a) Irregularly triangulated input model. (b) Im-
age processing for domain decomposition (rowwise from top
left): planar parameterization of the input model; normal
map; color quantized normal map; edges detected on the
quantized map. (c) Color regions correspond to regions of
the quantized image, black wireframe corresponds to curves
found through edge detection. (d) Control mesh on level two
of a Loop hierarchy obtained from the decomposition.

tures in geometry images 16. In this context, semi-regular de-
composition remains one of the best representation choices.

The main contributions of this work are:

• A fully automatic framework for converting irregular tri-
angulated meshes to Loop 30 multiresolution hierarchies.
The conversion process supports transferring attribute
data (e.g., color) from the input mesh to the remeshed
model.

• A novel and efficient image-based approach that takes into
account input surface properties to generate a parameteri-
zation domain.

• A practical extension of geometry images 16 to applica-
tions beyond compression for network transmission.

• An elegant solution to other geometry processing prob-
lems, including face clustering, mesh simplification, and
wireframe generation. We strongly believe that casting
such computational tasks into image space provides new
and efficient alternatives to existing algorithms.

Note on terminology: The the generic term shape image
designates the 2D image used for model segmentation. We
prefer this broad term as it emphasizes the applicability of

our approach to other shape descriptors. The shape informa-
tion in our examples consists of surface normals.

2. Background

2.1. Surface Representations

We process input represented by polygonal mesh discretiza-
tions of 2-manifold surfaces. Without loss of generality, we
restrict our attention to triangle meshes. Figure 1 (a) illus-
trates an example of such a mesh corresponding to a duck
model. The target output representation was proposed in var-
ious forms by 32, 35, 42. Subdivision defines a smooth surface
recursively, as the limit of a sequence of meshes. A finer
mesh is obtained from a coarse mesh by applying a set of
fixed refinement rules. Multiresolution surfaces extend sub-
division surfaces by introducing details at each level. Each
time a finer mesh is computed, detail offsets are added to the
subdivided coarse mesh. A semi-regular mesh (i.e., a mesh
with subdivision connectivity) can be converted to a mul-
tiresolution hierarchy by defining a restriction operator that
generates vertices on a coarse level from those on a finer
level. Multiresolution details are computed as differences
between levels.

For conversion purposes, we regard a subdivision surface
as a function over a domain. The most natural choice for a
domain is the initial (coarsest level) mesh. Our method iden-
tifies such a domain for an arbitrary mesh and creates a mul-
tiresolution subdivision hierarchy on top of it.

2.2. Related work

Existing methods for converting arbitrary meshes to semi-
regular representations typically fall into one of two cate-
gories. On one hand, there are techniques that involve some
degree of manual adjustment (e.g., 25) requiring the user to
outline boundaries of surface patches corresponding to base
mesh faces. A different approach is proposed in 29. In this
case, a generic semi-regular mesh provided by the user is
fitted to the target irregular mesh. Fully automatic meth-
ods form the second category. In 11, a base domain is de-
rived by computing a Voronoi tiling of the original mesh.
Alternatively, a base domain is found by simplification of
the original mesh, possibly with constraints (e.g., 27, 26, 18, 22).
Typically, such methods employ local error measures and
the resulting partitions do not conform well to global salient
features of the model. Several methods address semi-regular
remeshing of certain classes of input surfaces. For instance,
the method of Kobbelt et al. 24 applies to closed genus zero
surfaces, while the approaches of Hormann et al. 21 and Al-
liez et al. 1 address remeshing of genus zero manifolds with
boundary.

Image-based geometry encoding Geometry images can be
automatically generated for an arbitrary mesh as described
in the innovative paper by Gu et al. 16. Instead of viewing
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a semi-regular remeshing approach as a collection of abut-
ting geometry images (as suggested in the original paper),
a semi-regular decomposition of the 3D model is extracted
from a single such image. By accommodating any cutting
/ flattening combination and removing the square bound-
ary parameterization requirement, we generate images ef-
ficiently and with reduced distortion, taking advantage of
state-of-the-art parameterization methods. Since there is no
need for our application to compress the images, we do not
have to worry about reconstruction artifacts.

Perhaps the closest to our technique is the method of Al-
liez et al. 2 which uses images to guide the remeshing pro-
cess. The major distinctions lie in the fact that, in their case,
multiple images are associated with a single model (i.e., a
decomposition into charts is done using the method of 11

and not guided by the images), semi-regular remeshing is
obtained by subdividing a uniform mesh in parameter space
(thus ignoring model features), and the output is not recov-
ered in multiresolution format.

Mesh Cutting and Parameterization The flattening of ar-
bitrary meshes has been an extensively researched topic
as it has numerous applications, including texture map-
ping, remeshing, and modeling. While many methods ad-
dress the problem of flattening meshes with disc topology
(e.g., 13, 20, 28, 9), recent techniques for mesh cutting (39, 16, 12)
allow parameterization of 2-manifolds of arbitrary genus
onto planes. Our approach to domain decomposition is in-
dependent of the parameterization and may therefore be
used in conjunction with any such scheme. In this paper we
demonstrate our technique using several flattening scenar-
ios: a cylindrical projection onto the polar plane proposed
by Brechbühler et al. 7, the angle-based flattening approach
of Sheffer and de Sturler 38, and the conformal mapping of
Desbrun et al. 9.

Face clustering and feature extraction Many authors have
addressed this problem 15, 23, 36, 28. To the best of our knowl-
edge, existing methods perform the partitioning directly on
3D mesh representations. This type of approach requires
formulating planarity constraints (see, for example, 15) that
have to be checked as regions are generated. Additional mea-
sures are needed to control the shape and orientation of the
clusters. In many cases the generated partitions are poorly
aligned with geometric features of the underlying surface or
tend to wrap around cylindrical shapes. Most importantly,
they and do not lead to a corresponding mesh in an obvious
fashion. Additional non-trivial processing must follow to re-
cover a suitable triangulation 36.

Triangulations with constraints The issue of computing a
planar triangulation of a set of points in the presence of ver-
tex, edge, and hole constraints was studied by many authors.
In our implementation we use a publicly available triangula-
tion library 40.

3. Domain Decomposition

To compute an initial base domain for our multiresolution
representation, we first identify regions of the input mesh
that exhibit little or no shape variation and can therefore be
parameterized over a few coarse polygonal elements with
reduced distortion. The regions consist of connected sets of
faces and completely partition the input model. This type of
decomposition has numerous applications beyond parame-
terization and remeshing, to object recognition, shape per-
ception, collision detection, and ray tracing.

We reduce the complexity of the partitioning task by cast-
ing it into the 2D space of a shape image corresponding to
the model. Our algorithm for computing a base mesh for an
arbitrary model consists of the following main steps:

1. Generate a shape image corresponding to the input mesh.
Also compute an invertible mapping p between the mesh
and the image.

2. Smooth and color quantize the shape image to identify
regions of little or no shape variation.

3. Perform edge detection and linking on the quantized im-
age to generate boundary curves between regions.

4. Simplify boundary curves and generate coarse polylines
separating the shape regions.

5. Triangulate the polyline set using the polylines as con-
straints.

6. Using the inverse mapping p−1, project the triangulation
obtained in step 5 onto the input mesh to obtain a base
mesh.

7. Cleanup and optimize the base mesh.

Each of these steps is described in detail next. A simple
model is used to illustrate the main points (see Figure 5).

3.1. Image Creation

Following 16, a 2D image representing a 3D mesh can be
obtained by cutting the mesh and flattening it onto a plane.
Unlike in 16, where the boundaries of the flattened mesh are
fixed onto a square, we accommodate various parameteriza-
tion schemes, with and without fixed boundaries. Natural-
boundary maps typically reduce distortion at the expense of
an acceptable increase in computational cost.

Let M1 denote the mesh resulting from cutting the in-
put mesh M and D the domain of the parameterization of
M1 onto the plane. The parameterization p is an invert-
ible piecewise linear map p : M1 → D that associates do-
main coordinates (u,v) to each mesh vertex in M1. We typ-
ically normalize the planar coordinates to the unit square
and we compute the shape image over the rectangular region
defined by the axis-aligned bounding box of the flattened
mesh. Figure 5(c) shows a fixed boundary parameterization
of the mushroom model from Figure 5(a). The correspond-
ing shape image (i.e., normal map) generated by rendering
the flat mesh p(M1) using the normalized normal vectors of
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mesh M1 as colors per vertex is shown in Figure 5(d). Sim-
ilarly, the shape image corresponding to the face model in
Figure 9 (a) was created from a parameterization with natu-
ral boundaries shown in Figure 9 (b). In the latter case, re-
gions of the image outside p(M1) are marked as background
(shown in black in Figure 9 (c)).

The computation of the inverse map p−1 involves a point
location procedure. Given a point (u0,v0) in the plane of
the parameterization, we search for the parametric triangle
TD containing it. If such a triangle is found, the barycen-
tric coordinates α and β of (u0,v0) with respect to TD are
computed and used to recover the pre-image of (u0,v0) in
3D: p−1(u0,v0) = (1−α−β)a + αb + βc, where a,b, and
c denote the vertices of the mesh triangle TM1 corresponding
to TD. To avoid resampling problems along the parameter-
ization boundary, an additional map π : ∂M1 → ∂D is also
maintained. A boundary point (u1,v1) for which a triangle
containing it cannot be found is first mapped to the closest
point on ∂D and then onto M1 via π−1.

3.2. Color Quantization for Region Identification

Mesh smoothness is typically the main criterion by which
faces are grouped into regions. Although triangle meshes are
piecewise linear surfaces and therefore not C1 continuous, a
number of authors have defined and studied smoothness in
a discrete sense. In this context, smooth meshes are charac-
terized by low discrete curvature, where the latter is approx-
imately computed from vertex normal estimates (see 34 for a
survey). Once computed, such differential quantities are en-
coded as colors in the shape map. Thus, region finding on
a 3D mesh can be formulated as a color quantization / seg-
mentation process applied to the corresponding shape im-
age. While any type of quantization produces a partition of
the input mesh, accurate color classification is important to
ensure a good decomposition. We explain our choice in the
remainder of this section. A Gaussian filter is typically ap-
plied to the shape image before quantization to attenuate any
artifacts due to discretization. Figure 5 (e) shows the result of
color quantization applied to the normal map in Figure 5 (d).
The corresponding partition of the original model is shown
in Figure 5 (g).

K-means clustering is a popular clustering algorithm with
applications not only to image processing, but to data mining
in general 37. It iteratively refines the clusters defined by K
centers while attempting to minimize the total mean square
quantization error. Given K centers C = {c1, · · · ,cK} and N
data points X = {x1, · · · ,xN}, the performance function to be
optimized during classification is defined as:

Q({xi}Ni=1,{ck}Kk=1) =
K
∑

k=1
∑

x∈Sk

‖ x− ck ‖2

where Sk is the subset of X containing points that are closest
to ck than to any other centers in C (i.e., {Sk,k = 1, · · · ,K}
is the Voronoi partition of X given by the K centers).

For segmentation of color images depicting scenes with
complex spatial arrangements, K-means clustering is typi-
cally used to obtain an initial segmentation and is followed
by more sophisticated schemes to account for local inten-
sity variations and spatial constraints 8. For the segmenta-
tion of shape images corresponding to a single object, we
have found the K-means partition adequate without the need
for additional processing. We proceed as follows:

Initialize the centers of the K clusters.
Repeat

Assign each pixel to a cluster such that Q is minimized
(i.e., compute the Voronoi partition of the pixels with
respect to the current centers)
Update the centers of the clusters

until (no pixels have changed clusters)

The choice of K and the initial centers depends on the
semantics of the shape image. For normal maps, we sample
the space of all normals along a small number of directions
(e.g., the vectors originating at the center of the unit cube
and pointing to its vertices and face centers).

The partition of the input model obtained through quan-
tization may be used in a variety of applications, including
texture mapping and bounding volume computation for spa-
tial queries.

3.3. Edge Detection and Wireframe Generation

For base mesh extraction, we further process the result of
quantization to identify a coarse polyhedral domain with
facets covering the identified regions and with edges along
the boundaries between them. To achieve this, we use an-
other common image processing operation: edge detection.

Figure 5 (f) illustrates the result of edge detection applied
to the quantized image in Figure 5 (e). The goal is to find the
edge curves delineating the color clusters. These edges are
computed efficiently in a single pass over the image using
a marching algorithm. We view the image as a grid G, with
grid points located at pixel centers. A two-step approach is
used:

For each grid cell in G do
Find edge segments inside cell

Link segments and form edge curves

In the first step we use a marching-squares-type algo-
rithm 31. Intersection points of the edge curves with grid
cells are found by testing for color changes along the four
edges of a cell. If a color change is detected a curve point is
inserted in the middle of the edge. Curve points are then con-
nected by segments, following a routine marching approach.
In the second step, curve segments from the previous step
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are linked together by matching their endpoints to form edge
curves as shown in Figure 5 (f).

At this point, a wireframe representation of the model can
be computed by projecting the edge curves onto the input
mesh using the inverse mapping p−1. An example is shown
in Figure 5 (h). This kind of representation could serve,
for instance, as a minimal representation to be displayed on
resource-constrained devices such as cell phones and wrist-
watches.

(a) (b) (c)

Figure 2: Steps of the Douglas-Peucker polyline simplifica-
tion algorithm. (a) The farthest point from the shortcut (filled
circle) is computed. (b) The polyline is refined to meet the
tolerance criterion. The process is repeated for each of the
two segments. (c) The resulting simplified polyline is shown
bold.

3.4. Curve Simplification for Polyline Detection

To generate a triangulation that takes into account the bound-
ary curves between regions, we approximate each curve seg-
ment with a coarse polyline. The edges of these polylines
form a subset of the base domain edges in the plane.

Given a polygonal chain, the curve simplification prob-
lem is to compute a polyline of reduced complexity that
approximates the original chain according to some prede-
fined error criterion. Curve simplification is useful in a num-
ber of fields and has been studied by numerous authors.
As near-linear time algorithms for simplification are rather
involved, simple heuristics have been proposed 10, 19. Such
heuristics are particularly attractive in our case, as the curves
resulted from segmentation contain a relatively small num-
ber of points. We implemented a variant of the well-known
Douglas-Peucker method 10 as it is efficient and produces
solutions similar to subjective simplifications a human user
would perform. The basic idea is illustrated in Figure 2.
Given a tolerance ε, an initial solution is formed by the short-
cut between the first and last points of the curve (Figure 2
(a)). If all vertices of the input chain are within ε distance
from the shortcut, the algorithm terminates with the short-
cut as the solution. Otherwise, the farthest point from the
shortcut is found and the shortcut is refined into two seg-
ments passing through this point (Figure 2 (b)). The process
is repeated recursively for each segment. The final solution
is shown as a bold line in Figure 2 (c).

We keep the endpoints of the edge curves fixed and we
simplify the curves according to the method just described.
The result is a connected set of coarse polylines approximat-
ing the boundaries of the shape regions. Depending on the

tolerance parameter, coarser or finer approximations are pos-
sible (simplified polylines are shown in black in Figures 5(i)
and (j)).

We have adapted the Douglas-Peucker algorithm to our
problem. The edge curves represent boundaries of relatively
flat regions of the input mesh. Since they are detected on the
flattened mesh, they appear distorted. To avoid propagating
the distortion to the simplified curves, we always perform
the selection of the farthest point from the shortcut in 3D:

For each edge curve C = {c0, · · · ,cn} do

Compute 3D curve: C3D = {p−1(c0), · · · , p−1(cn)}
Q←{(c0,cn)}
S←∅ (the simplified output curve)
While (Q is not empty) do

remove shortcut segment (ci,c j) from Q
find P3D = p−1(ck) ∈C3D farthest

from (p−1(ci), p−1(c j))
if (dist(P3D, (p−1(ci), p−1(c j)) > ε) then

Q = Q∪{(ci,ck), (ck,c j)}
else S = S∪ (ci,ck)

In addition to avoiding distortion, 3D simplification is also
needed for properly stitching meshes cut before flattening.
The cut curves may project into different shape planar curves
(e.g., labeled curves in Figure 7 (b) also shown separately in
Figure 3 (a) and (b)) that would not be simplified consis-
tently using a planar version of the algorithm. Working in
3D allows us to elegantly solve this problem.

(a) (b) (c)

Figure 3: Our modified curve simplification algorithm en-
sures that two cut curves in the plane corresponding to the
same 3D curve are consistently simplified ((a) and (b)). Sim-
plified 3D curve is shown in (c). Cut curves correspond to
those marked in Figure 7 (b).

Since edge curves are simplified independently, it is possi-
ble that the simplified planar curves intersect at points other
than their endpoints. In cartography this is known as the map
simplification problem and has received some attention in
the graphics community (e.g., 33). We implemented a simple
check for each curve being simplified. If S is a shortcut for
the curve C such that S satisfies the tolerance criterion but
intersects at least one of the already simplified curves, we
further refine S until no intersections occur.
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3.5. Base Mesh Creation

The next step is to use the polylines separating regions of the
shape image to compute a constrained triangulation TM . To
obtain a triangulation, we use an off-the-shelf 2D Delaunay
triangulator 40. Figures 5 (i) and (j) show two constrained tri-
angulations generated for the mushroom model, correspond-
ing to two different sets of simplified curves. The constraints
are shown as solid lines and the edges introduced by the tri-
angulation with dashes.

A base mesh BM is computed from the planar triangula-
tion TM : BM = p−1(TM). Two different base meshes for the
mushroom model are shown in Figures 5 (k) and (l). A mul-
tiresolution Loop representation with six levels is shown in
Figure 5 (b). Note that, as the input model is coarsely tessel-
lated, the multiresolution representation captures the tessel-
lation edges as multiresolution detail.

If the original mesh was cut before flattening, the base
mesh has to be stitched accordingly. Our solution is to in-
clude the curves along the cut into the set of curve segments
defining the wireframe and to consistently process them as
explained in the previous section.

3.6. Base Mesh Optimization

Figure 4 (a) illustrates a constrained triangulation of a given
mesh region. The quality of the triangulation can be im-
proved by inserting Steiner points inside the region. We use
a heuristic that places additional points at approximate cen-
ters of maximal balls. For a mesh region enclosed by a set
of 3D curves, we iteratively find vertices within the region
with the largest minimum distance to the boundary curves
(in 3D) and to previously computed Steiner points. We then
project these points into the parameter domain and we use
them as constraints during triangulation (see Figure 4 (b)).
Steiner points are inserted one-by-one, until the largest min-
imum distance falls below a threshold.

(a) (b)

Figure 4: Base mesh optimization: (a) constrained trian-
gulation; (b) improved triangulation with one additional
Steiner point.

This type of optimization is aimed at improving the quality
of the triangulation. Further optimization of the base mesh
takes place during multiresolution analysis, as described in
the next section.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5: (a) Irregular input mesh. (b) Multiresolution Loop
result. (c) Planar parameterization (model was cut along
the black curve shown in (a). (d) Shape image. (e) Quan-
tized shape image. (f) Edge curves. (g) Decomposition cor-
responding to (e). (h) Wireframe corresponding to the curves
in (f). (i), (j) two different degrees of curve simplification.
Triangulation with constraints along the polylines (red). (k),
(l) Base domains corresponding to (i), (j), respectively.
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4. Resampling and Analysis

As a primary application of the domain decomposition
method presented, we describe the creation of a multires-
olution hierarchyH. Given a coarse polyhedral base domain
K0,H is built in two steps:

1. Compute data on the finest level of H by resampling the
input mesh over the base domain K0.

2. Fill in coarser levels of the hierarchy by multiresolution
analysis.

Resampling Given a target number of levels L, L− 1 steps
of Loop subdivision are applied to the base domain K0. This
generates a smooth domain KL−1 with the same connec-
tivity as the target control mesh HL−1 (see Figures 7 (e)
and 10 (a)). For each domain vertex vK its position vlim

K and
normal on the limit surface are computed. A sample in HL−1

is generated by intersecting the directed line through vlim
K

along the normal direction with the original surface. In ei-
ther scenario, if multiple intersection points occur, we re-
tain the closest one. If no intersection points are found (this
may happen near boundaries of open meshes), we find the
closest original mesh face to the position being resampled
and we intersect the ray with the plane containing that face.
More accurately, boundary curves of the original mesh could
be projected onto the resampled multiresolution mesh which
could then be trimmed to these curves following a method
similar to the one proposed in 6. We have yet to pursue this
solution.

Note that other alternatives to resampling by normal
shooting could be employed. For example, when the mesh
being flattened is the input mesh, the resampling can be per-
formed in the parametric domain. As discussed in the next
section, this may not always be the case (e.g., if, for practi-
cal reasons, simplified versions of the input models are used
to recover a base domain).

Multiresolution analysis The basic idea of multiresolution
analysis is to decompose a function or signal into a smooth
background and a collection of details. At a given scale, the
original function is approximated by ignoring all details too
small to be discerned at that scale. In a multiresolution mesh
hierarchy, data on a coarse level H j−1 can be computed from
data values on the finer level H j by applying a restriction
operator. Multiresolution details are computed at each level
as the difference between the original positions on that level
and the positions obtained by subdivision from the coarser
level. The details are encoded with respect to local frames.

Fitting is used to further adjust the positions of control
mesh vertices on coarser levels. The fitting procedure min-
imizes in least-squares sense the difference between values
of the smooth surface evaluated at vertex positions on the
finest level L− 1 of the hierarchy and values obtained after

applying L− j− 1 steps of subdivision to the data on level
j, as described in 4:

min
p ∑

w∈V L−1

||[p]L−1
w − [SL− j−1 p j]w||2 (1)

where the minimum is computed over all possible choices of
control points pj , V L−1 is the set of vertices on the finest-
level of the hierarchy, SL− j−1 is the subdivision matrix for
L− j− 1 subdivision steps, and []w means that the resulting
smooth surface is evaluated at parameter values correspond-
ing to vertices w of the control mesh.

Resampling appearance attributes In addition to resam-
pling geometry, we can also extract appearance attributes
from the original model. An example is shown in Fig-
ure 11 (d): color information from the head of the Bastet cat
is transferred onto the corresponding multiresolution repre-
sentation. In this case, color data is associated only with ver-
tices of the finest level mesh. We have not yet investigated
the issue of restricting appearance data to coarser levels of
the hierarchy with minimum impact on visual quality.

5. Discussion and Results

Performance statistics The following table illustrates the
performance of our method. The measurements have been
recorded on a Pentium IV 2.20GHz machine with 1.5GB
of RAM. Angle-based flattening 38 was used to parameter-
ize the face model. The other models were mapped onto the
plane using the method of 7. Domain decomposition mea-
surements include image processing times (typical image
resolution was 400× 400 pixels or less), curve simplifica-
tion, and triangulation. The base mesh extraction time in-
cludes computing a 3D mesh corresponding to the computed
triangulation, optimization, and stitching.

Model face cat duck bunny Venus

Number of faces:

Input 1,686 14,569 5,004 69,666 100,000

Simplified input N/A 1,705 N/A 1,756 1,718

Output base mesh 173 142 116 262 78

Processing times (seconds):

Parameterization 10.496 8.692 35.354 14.387 9.339

Domain decomp. 7.171 6.970 13.520 9.073 7.371

Base mesh extrac. 0.691 0.371 1.021 0.591 0.230

Total 18.358 16.033 49.895 24.051 16.943

For some of the larger models we used simplified ver-
sions to recover the base domain. Simplification was done
offline using the method of Gueziec 17 and took under 5
seconds in all cases. While many existing parameterization
techniques can be carefully tuned to handle large models,
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(a) (b)

Figure 6: (a) Parameterization (top) and shape map (bot-
tom) for the Venus model. (b) Loop multiresolution hierarchy
(control mesh on level five is shown). Input model courtesy
of Cyberware, Inc.

using simplified versions is often a more practical choice.
We typically apply domain decomposition to lower resolu-
tion models (still reflecting the general shape of the original,
see Figure 11 (b)). Then we perform resampling with re-
spect to the high-resolution input data. This technique pro-
duces very good results efficiently. In effect, the base mesh
is being conformed to the general shape of the input and not
to the high-frequency information typically captured by the
fine tessellation.

Resampling was performed on the high resolution data,
with running times on the order of several minutes, depend-
ing on the finest level used for subdivision.

Remeshing quality By construction, the domain faces cor-
respond to relatively flat regions of the input mesh. Hence,
we expect the resampling to produce good results. For a
given subdivision level, we compute the approximation er-
ror using the metric proposed in 14 which measures the av-
erage squared distance between the remeshed and the orig-
inal models. For example, the approximation error for the
bunny, Venus, and rocker arm models is less than 0.0015%
of the input bounding box diagonal (0.0013%, 0.3e− 4%,
and 0.27e− 5%, respectively) using five levels of subdivi-
sion.

Figure 7 illustrates comparatively the base meshes and the
corresponding smooth domains obtained with our method
(in (d) and (e)) and using a tolerance guided simplification
method 17, respectively (in (f) and (g)) with a similar base
face count.

Choice of parameters The current implementation de-
pends on several parameters. The default values for some
of the most important ones are briefly mentioned. The de-
fault parameterization is angle-based flattening 38. The num-
ber K of color clusters is set to 14, corresponding to the 14

2

1

(a) (b) (c)

(d) (e) (f) (g)

Figure 7: (a) Rocker arm (model courtesy of Cyberware,
Inc.). (b) Planar parameterization (after 9) - two corre-
sponding cut curves are labeled 1 and 2. (c) Loop multires-
olution remesh (control mesh on level 4 is shown). (d) Base
mesh. (e) Smooth domain for resampling. (f), (g) Base mesh
and domain obtained by mesh simplification.

directions defined by the origin and the face centers and ver-
tices of the unit cube. The curve simplification tolerance ε is
a percentage of the model bounding box diagonal. For some
of the examples these values were altered for illustration pur-
poses. Thus, only 6 color clusters were used for remeshing
the mushroom in Figure 5. Three different parameterization
methods are shown. The effects of varying ε are reflected in
Figures 5 (i) and (j).

Limitations of the approach The main limitation of our
approach derives from the fact that it requires flattening the
input model. It is well-known that, in general, planar param-
eterizations of arbitrary surfaces cannot be simultaneously
conformal and authalic. Since most existing methods aim
for conformality (a notable exception is 9), certain portions
of the input model are likely to suffer from severe area dis-
tortion. Figure 10 (a) shows a smooth base domain for the
bunny model obtained with our method. Note the undersam-
pling of the bunny’s left ear due to severe compression of its
surface area in parameter space. Our solution to this problem
is briefly described next.

Layered parameterization A zoom lens approach allows
us to process severely distorted regions in the parameteriza-
tion separately. We use a stretch map (similar to 36, 3) to iden-
tify severely distorted regions in the shape image. Figure 8
(a) shows the stretch image corresponding to the parameteri-
zation of the bunny model. Regions in this image which suf-
fer from severe distortion are isolated through simple image
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(a) (b)

Figure 8: (a) Stretch map for the bunny model. (b) Severely
distorted areas are segmented using contrast enhancement
and thresholding. This image is used a mask in the zoom
lens approach (see Figure 10(b)).

processing operations: contrast enhancement and threshold-
ing. The result is a black-and-white image in which clus-
ters of white pixels correspond to highly compressed mesh
regions (see Figure 8). We use this image as a mask to ex-
tract the corresponding submeshes and we process them sep-
arately, as illustrated in Figures 10 (b) and (c). The domain
decomposition method is first applied to the submesh cor-
responding to the marked region (e.g., the left ear of the
bunny): the submesh is flattened, its shape image is com-
puted, color quantized and polyline constraints are detected.
Second, the decomposition method is applied to the rest of
the mesh. The two sets of polylines are merged and a trian-
gulation is performed as previously described. Figure 10 (b)
illustrates the two shape images corresponding to the left ear
(right image) and to the rest of the bunny (left image). The
ear polyline set is shown in 3D in Figure 10 (c) for illustra-
tion purposes. The final Loop multiresolution mesh is shown
in Figure 10 (d).

6. Conclusions and Future Work

In this paper we present an image-based approach to domain
decomposition and its application to multiresolution semi-
regular mesh extraction. Our approach takes advantage of
the information stored in a shape image corresponding to the
model to find regions of relatively constant shape on top of
which base domain faces are built. The extraction of a base
mesh is very efficient, as most computations are carried out
in image space through simple image processing operations.

The multiresolution meshes generated by our method can
be used by various algorithms designed to operate on this
representation, such as interactive editing and boolean oper-
ations 4, 5. Variations of our technique are useful for other ap-
plications that require mesh partitioning and feature extrac-
tion. For example, by varying K in the quantization phase,
different partitions of the model can be obtained for use in
methods involving spatial queries, from ray tracing to col-
lision detection. Similarly, the wireframe generated can be

used as a standalone minimal representation of the model or
for further processing.

We envision a number of enhancements:

1. The method is applicable to the generation of quadri-
lateral meshes and Catmull-Clark multiresolution hierar-
chies. In fact, in the current implementation we can eas-
ily generate a quad base domain by splitting each base
triangle into three quads. However, this technique is not
very efficient as it triples the number of base mesh faces
and it introduces a large number of valence 3 vertices.
Instead, we are investigating quadrangulations with con-
straints which will likely yield superior quad meshes.

2. Different decompositions can be achieved by storing dif-
ferent kinds of shape information into the shape image.
For instance, segmentation based on model curvature or
other scalar / vector field defined over the mesh may be
useful.

3. We also plan to address the problem of exactly aligning
mesh edges with sharp features. This functionality can be
added to our method by tagging sharp edges in the planar
parameterization and using them along with the rest of
the constraints during triangulation.
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(a) (b) (c) (d)

Figure 9: (a) Input face model. (b) Planar parameterization using angle-based flattening. (c) Normal map with holes. (d) Loop
multiresolution hierarchy (control mesh on level three is shown).

(a) (b) (c) (d)

Figure 10: (a) Smooth base domain generated for the bunny model. Note the undersampled left ear due to area distortion. (b)
Zoom lens approach: area distorted region is masked out of the bunny’s normal map (left) and the corresponding geometry (in
black on the left inset) is processed separately: the right image shows the parameterization corresponding to the ear geometry
overlayed on top of its normal map. (c) Simplified wireframe recovered for the ear is shown with thick black lines. Constraints
along the corresponding parametric segments are added to the set of constraints for the rest of the bunny. (d) Multiresolution
Loop reconstruction with 5 levels (details of the original mesh are sampled on the third level). Input model courtesy of Stanford
University.

(a) (b) (c) (d)

Figure 11: (a) Scanned model of the Bastet cat. (b) Simplified model used as input for domain decomposition. (c) Base mesh
extracted with our method. (d) Loop multiresolution hierarchy with four levels. Color attribute is resampled on the finest level.
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