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New methods are described that should facilitate
high-resolution (5–10 Å) image reconstructions from
low-dose, low-contrast electron micrographs of fro-
zen-hydrated specimens and processing of large,
digital images produced by new imaging devices
and modern electron microscopes. Existing tech-
niques for automatic selection of images of indi-
vidual biological macromolecules from electron mi-
crographs are inefficient or unreliable. We describe
the Crosspoint method (CP), which produces good
quality solutions with relatively small miss rates
and few false hits, and an extension of this method
along with a procedure for refining its solution. Two
algorithms for processing large images, one based
on image subsampling, the other on image decompo-
sition, are described. A large image is first com-
pressed (e.g., by subsampling) and the CP method is
applied to the compressed image to produce an
initial solution. The information gathered at this
stage is used to cut the original image into subim-
ages and then to refine the particle coordinates in
each subimage. An interactive environment for ex-
perimenting with particle identification methods is
described. r 1997 Academic Press

1 INTRODUCTION

An important goal of transmission electron micros-
copy is to reveal the three-dimensional structure of
the specimen under study. From electron micro-

graphs which contain many different projections of
identical macromolecules (e.g., virus particles), it is
possible to produce a spatial model of the structure of
an average particle (see, for example, (4)).

The three-dimensional (3D) model of a specimen is
normally represented as a density function sampled
at the points of a regular grid. The images of
individual particles in electron micrographs are ap-
proximate projections of the specimen in the direc-
tion of the electron beam. The problem of determin-
ing the specimen structure from the micrographs is
equivalent to the problem of reconstructing a density
distribution from its projections. Fourier theory pro-
vides a simple approach to finding the 3D structure
of an object from its projections. The Projection
Theorem (6) connects the Fourier transform of the
object with the transforms of its projections.

The basic steps of the 3D reconstruction process
begin with the selection (boxing) of individual par-
ticle images from a number of digitized micrographs
(Fig. 1). These projections of the virus particles
constitute the different views used to fill in the 3D
Fourier transform of the specimen. The number of
such views depends on the desired resolution of the
final structure and on the particle size. Next, the
orientations of the specimen that give rise to these
projections must be determined (9). The best results
are often obtained in the case of highly symmetrical
particles such as icosahedral viruses because the
high symmetry leads to redundancies in the Fourier
transform data and this, in turn, aids in the orienta-
tion search process. The 3D Fourier transform of the
particle is calculated from experimental values in
central sections. The values of the 3D transform
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must be sampled at the points of a 3D regular grid
and this requires interpolation methods (14,18). The
last step is to compute the electron density function
from the 3D Fourier transform by an inverse Fourier
transformation.

Boxing, the first step in the 3D reconstruction
procedure, is generally performed by a manual selec-
tion process. Because this selection procedure can be
tedious, most low-resolution reconstructions (e.g., 20 Å)
of relatively small virus particles have been computed
from fewer than 100 particle images. It was estimated
that approximately 2000 particle images are necessary
for the reconstruction of a virus with a diameter of 1000
Å at 10 Å resolution (20), and recent results at 7–9 Å
resolution with hepatitis B virus capsids (3,5) have
confirmed this estimate. Hence, manual boxing meth-
ods are becoming impractical. The need for computer-
aided particle detection methods provides the motiva-
tion for our work.

At high magnification, noise in electron micro-
graphs of unstained, frozen-hydrated macromol-
ecules is unavoidable (14) and makes automatic
detection of particle positions a challenging task.
Variability in the background support film of the
specimen sample and radiation damage are two

major sources of noise. Background variations in a
micrograph can be enhanced in the digitized image
by use of a color look-up table (Fig. 2). Radiation
damage is the consequence of the exposure of the
specimen to the electron beam required to produce
high-magnification images. Limited exposure is used
to maximize specimen preservation, but the result is
a low-contrast image. A typical low-contrast micro-
graph and a histogram of the density values show
that gray levels in the image are concentrated in a
very narrow range, as discussed in section 2.3 and
illustrated in Figs. 5a and 5c.

An ideal automatic particle selection method must
produce a reliable solution and be computationally
efficient. For high-resolution reconstruction work it
is necessary to analyze large numbers of micro-
graphs at speeds comparable to the data acquisition
rates. New input devices such as modern scanning
microdensitometers and CCD (charge-coupled de-
vice) detectors routinely allow frames consisting of
6000 3 6000 or more pixels to be collected within a
time frame of minutes or less.

FIG. 1. Schematic representation of the steps in a three-
dimensional reconstruction of a spherical virus particle from
electron micrographs.

FIG. 2. Variation of the background intensity values across a
digitized micrograph containing a mixture of bacteriophage FX174
(,30 nm in diameter) and polyoma virus (,50 nm in diameter)
particles. Inset at lower right shows the color look-up table used to
map image intensities. Graph at top depicts the intensity varia-
tion along a line that crosses the field of particles (black horizontal
line). The virus particles are embedded in a thin (,100 nm) layer
of vitrified water which is suspended across holes in a carbon film
(edge seen in the lower left corner). In this example, the intensity
range varies linearly from red to yellow to blue, corresponding to
progressively lower densities in the specimen.
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The quality of the solution can be measured in
terms of the number of particles correctly identified,
the number of unidentified particles, and the num-
ber of false hits. Missed particles do not constitute a
severe error as long as their number is small.
Information that could be gathered from these projec-
tions is lost, but the loss can be compensated by
increasing the number of micrographs from which
particles are selected. False hits pose a more serious
type of error. If used, such regions that do not
correspond to any real particle projections introduce
additional errors into the 3D Fourier transform.
However, methods do exist that allow such ‘‘bad’’
data to be screened (e.g., (2,9)).

2 AUTOMATIC PARTICLE SELECTION METHODS

Image processing of noise-obscured micrographs
enables one to deal with problems such as (a) locat-
ing and extracting the motif representing the projec-
tion of a particle from a noisy background (8,11,16),
(b) enhancing the structurally significant details of
this motif (6,11), and (c) determining the orientation
of the particle which produced the motif relative to
some viewing direction. A number of techniques that
take advantage of the high symmetry of icosahedral
viruses have been successfully implemented and are
routinely used to solve problems (b) and (c) (6,9).
However, the human visual system remains unsur-
passed in its ability to analyze micrograph images
effectively and reliably.

In this section we review the effects of several
image processing algorithms and heuristics on micro-
graphs and discuss the results obtained.

2.1 Edge Detection

Edge detection is a popular segmentation method
which exploits the discontinuity of the gray-level
values in an image. An edge is the boundary between
two regions with relatively distinct gray-level proper-
ties. The idea is to transform the image so that a
pixel no longer contains gray-level information, but a
magnitude and direction representing the severity
and orientation of the local gray-level change. Gradi-
ent operators have been widely used for edge detec-
tion (10). A local derivative (gradient) is computed at
every pixel in the image. Regions of constant inten-
sity yield a null gradient, whereas varying regions
are characterized by nonzero derivatives. The gradi-
ent of an image I at pixel (x, y) is a vector:
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I

x

I
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A special case of gradient operators is the Sobel
operators, which have both a differencing and a
smoothing effect (10). A common implementation of
the Sobel operators is (using the notations in Fig.
3a): Ix 5 (z7 1 2z8 1 z9) 2 (z1 1 2z2 1 z3) and Iy 5
(z3 1 2z6 1 z9) 2 (z1 1 2z4 1 z7). The masks for these
operators are shown in Figs. 3b and 3c.

The Sobel transform fails to yield reliable results
when applied to electron micrograph images. The
digitized micrograph is very noisy and has signifi-
cant levels of intensity variation both inside and
outside particle regions. Clearly the values of the
intensities alone are incapable of defining which
portions of the line lie inside particles and which of
them lie in the background (Fig. 2).

2.2 Template Matching

Template-matching methods have been proposed
by several groups (8,12,16,20). In this method a
reference (template) particle is selected from the
micrograph and cross-correlated with the entire
image (Fig. 4). Computationally it is more efficient to
transform the entire image and the reference par-
ticle to the Fourier domain, multiply the transforms,
and transform back than to perform a correlation of
the original images. Peaks in the correlation pattern
(i.e., values of the correlation coefficient larger than
a particular threshold) identify the locations of re-
gions in the micrograph most similar to the template
and, in the ideal case, correspond to the centers of
the particle projections.

Olson and Baker (16) proposed a two-cycle tem-
plate-matching algorithm in which the peaks de-
tected after the first correlation cycle are sorted
according to their magnitude, the particle projec-
tions corresponding to the strongest peaks are aver-
aged, and the average is used as a new template in
the second cycle of the algorithm.

Template-matching methods produce reasonable
results only when applied to images with a good
signal-to-noise ratio, i.e., formed with medium to
high electron dose, and after background variations
are minimized or removed. However, it is commonly
agreed that it is difficult to identify peaks in the
cross-correlation maps computed from such low-dose

FIG. 3. The Sobel operator masks.
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micrographs, and peak discrimination is extremely
sensitive to fluctuations of the average intensity
value throughout the image.

The basic template-matching algorithm described
by Thuman-Commike and Chiu (20,21) is preceded
by a constant area detection and correction process.
The algorithm is rather complicated, involving im-
age ‘‘cutting’’ and ‘‘sewing.’’ The authors report per-
centages of false hits between 35 and 55%.

The computations involved in template-matching
methods are relatively large because the complexity
of the Fourier transform alone is n 3 log (n), with n
the number of pixels in the image. A small image
may consist of n 5 1000 3 1000 pixels, whereas a
scan of an entire micrograph can easily approach n 5
10 000 3 10 000 pixels.

2.3 The Crosspoint Method

The Crosspoint method we have developed com-
bines traditional image processing techniques with
heuristics and a new algorithm for the detection of
particle centers. The time complexity of various
algorithms used by this method is n, where n repre-
sents the number of pixels in the digitized micro-
graph. This method is described in detail in (13). The
main steps are summarized below and illustrated in
Fig. 5.

2.3.1 Image enhancement. The digitized micro-
graph is enhanced by histogram equalization (10),
followed by image averaging to smooth out local
fluctuations of pixel intensities. High-resolution 3D
reconstructions usually include close-to-focus, i.e.,

low-contrast, images in which the high-resolution
details are not destroyed by the electron beam.
Histogram equalization helps improve image con-
trast by redistributing the gray levels in the image
more uniformly over the gray-scale range (Figs.
5a–5c).

The rationale for neighborhood averaging the digi-
tized, histogram-equalized image is motivated by the
fact that the intensities of the pixels in the image are
not characteristic of the inside or the outside of a
particle projection (see Fig. 2). A particular intensity
value may occur in a region inside a projection as
well as somewhere in the background, where there
are no particles. However, the majority of the pixels
inside a particle projection have lower intensity (are
darker) than the pixels surrounding the particle,
thus enabling the human eye to easily recognize
particles. High-intensity fluctuations tend to be sharp
and scattered throughout the entire area of the
projected image. Since averaging is a smoothing
operation, such fluctuations are reduced or disap-
pear completely in this process. However, the size of
the averaging filter must be chosen carefully to
prevent the resulting image from becoming too
blurred (Fig. 5d).

2.3.2 Particle identification with a double scan
procedure. The particle identification algorithm is
at the core of the Crosspoint (CP) method. It consists
of two phases: marking and clustering.

The algorithm takes as input an image and the
value of the radius r of the particles to be identified.
The image could be the original raw image, the
enhanced image, or a subimage. The radius of the
particles is defined interactively based on the visual
inspection of the image or is inferred from measure-
ments made on previous images. The result of the
marking phase is a binary image. Each pixel is
considered to belong either to a particle projection
(marked, set to 1) or to the background (not marked,
set to 0).

In the original CP method (13) the image is
scanned horizontally, row by row from top to bottom.
Pairs of pixels at distance r 1 1 are compared and
the difference between the intensity values of the
pixels in such a pair is tested against a threshold
value. If this difference is larger than the threshold,
the algorithm proceeds to compare the lower inten-
sity value with that of a pixel at distance r 1 1 in the
vertical direction. This difference is also tested
against the threshold and, if it is larger, the algo-
rithm marks the element of the pair with the lower
intensity as being inside a particle; otherwise the
pixel is not marked.

A portion of a micrograph after marking (Fig. 5e)
shows pixels that have been marked as being inside
a particle colored in green, and those unmarked

FIG. 4. The basic cross-correlation, template-matching algo-
rithm.
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FIG. 5. (a) Portion of a low-contrast micrograph of frozen-hydrated sample of reovirus cores. (b) The micrograph after histogram
equalization. (c) Gray-level histograms before (top) and after (bottom) histogram equalization. (d) The micrograph in (b) after neighborhood
averaging with a 10 3 10 filter. (e) Contents of the binary image after pixel marking (green) superimposed on the micrograph in (d). (f ) The
result of the CP2 method.

FIG. 6. The result of the marking phase in the case of an ideal particle. Note. The three lowest yellow pixels should have been colored green.
FIG. 7. Portion of a micrograph in which the pixels have been marked (a) once and (b) twice. In (b), the particle projections, and hence

their centers, are better approximated by the clusters.
FIG. 8. Disconnecting particles by thinning: (a) particle identification without thinning and (b) particle identification with thinning.
FIG. 9. The solution produced by the CP2 method for the micrograph shown in Fig. 2.
FIG. 10. (a) Electron micrograph containing several particle projections. (b) New particle positions (in red) after refinement (old

positions—in blue—are shown for comparison).



retaining their original intensities. For most par-
ticles, the clusters of green pixels approximate quite
well the area of the particle’s projection. The center
of each particle is computed as the center of mass of
the cluster corresponding to that particle.

Owing to the asymmetric nature of the scanning
process, the top region of each particle projection is
systematically left unmarked. The pixels marked by
the algorithm in the case of an ideal particle (Fig. 6)
are colored green, whereas the top portion of the
particle (yellow) is not marked because the comparison
between the intensities of those pixels and the ones at
distance r 1 1 in the vertical direction fails. Hence, this
single-scan process results in a systematic misjudging of
the particle centers in the vertical direction.

A more accurate version of the algorithm, CP2,
involves scanning the image twice: the first scan is
performed as before, followed by a second scan
applied to a transposed image rowwise (i.e., from
bottom to top). The marked pixels are the cumulative
sum of both scans. A portion of a micrograph with
pixels marked (a) after CP and (b) after CP2 is
illustrated in Fig. 7.

Clustering is the second phase of the particle
identification algorithm. It determines the clusters,
i.e., the connected components in the binary image
resulting from the marking phase. Two algorithms,
one based on a depth-first search and the other on a
coloring scheme, are briefly described.

The stack algorithm (13) is a depth-first algorithm
for detecting connected components in a binary
array using a stack. The array is scanned rowwise
until the first 1 is encountered. Its coordinates are
used to update the center of mass of the cluster
currently being determined and the size of the
cluster is incremented. All marked neighbors of the
current position are pushed onto a stack (eight
neighbors are considered). The next position to be
processed is the one at the top of the stack. A cluster
has been completely detected and processed when
the stack becomes empty. The horizontal scanning of
the binary array then resumes, until all clusters
have been detected.

The coloring algorithm was suggested by M. J.
Atallah (1). It detects connected components in a
binary array by ‘‘coloring’’ them with different colors.
As in the previous algorithm, the array is scanned
rowwise, and every time a marked position is encoun-
tered, it is either colored with a new color from a
color array (if none of its neighbors is colored) or it
receives the color of its neighbors. Only four neigh-
bors are considered (top left, top, top right, and left).
A decision must be made when, at some point during
the scanning process, two clusters that have been
considered separate and have been colored with two
different colors become connected. In this case, the
two clusters have to be ‘‘recolored’’ with the same

color. The simplest way to achieve this is to make the
two different colors synonyms. The center of mass
and the size of the clusters can be computed on-the-
fly, as the scanning progresses.

The size of a cluster is used to filter out clusters
that are too large or too small compared with the
expected area of the projection (see Section 3.2 and (13)).
The center of mass of each cluster approximates the
corresponding particle center. The application of CP2 to
the micrograph in Fig. 5e is shown in Fig. 5f.

2.3.3 Postprocessing. A particle identification
method is affected by two types of errors: (a) missed
particles and (b) false hits. In the CP2 procedure the
number of missed particles can be reduced by adjust-
ing the rejection criteria based on the size of the
clusters. A false hit occurs when a cluster that does
not correspond to a real particle projection is ac-
cepted. As mentioned in Section 1, this is a more
serious type of error. One way to reduce the number
of false hits is to calculate the average intensity
inside each of the particles detected and to compare
it with the average of all intensity values in a
circular region outside it. If the two average values
are very close, then it is very likely that the particle
is merely a false hit.

One of the most common causes for missing par-
ticles in the CP2 method occurs when just one cluster
is detected instead of two, as results when two
particle projections are touching or are very close to
one another (see Fig. 8a). Here, postprocessing is
necessary to disconnect the two clusters. A ‘‘thin-
ning’’ procedure has been adopted in which the
outermost layers of pixels from each cluster are
removed and this can effectively disconnect the
clusters that have merged into single clusters. This
procedure works in such situations because the
clusters are generally connected by thin ‘‘bridges.’’
The appearance of clusters before and after the
thinning procedure is illustrated in Fig. 8.

Results produced by the CP2 method for a micro-
graph which contains a mixture of two types of virus
particles is shown in Fig. 9. In this example, the
desired particles were the smaller ones (bacterio-
phage FX174). The larger particles (polyoma virus)
were included solely for calibration purposes (16).
The image is particularly noisy, a large portion of the
carbon film obscures the lower left corner, and the
variation of the background intensity is clearly vis-
ible. Nevertheless, the CP2 method is quite success-
ful in identifying most of the FX174 images and
distinguishes them from other objects (polyoma par-
ticles, carbon film, unidentified contaminants).

3 THE REFINEMENT OF PARTICLE POSITIONS

Our experience with a large number of micro-
graphs of different virus samples indicates that the
centers determined using the CP2 method approxi-
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mate fairly well the true centers of the particles.
However, it is possible to improve the quality of our
solution by refining the centers determined by CP2.
We assessed the quality of our refinement method by
comparing the positions of the centers before and
after refinement with centers selected by an experi-
mentalist. In the case of Fig. 10a, two corresponding
positions differ, on average, by (1.65, 3.37) pixels.
The error function used to calculate the average
distance between a position (xi

a, yi
a) detected by the

program and its manually selected counterpart (xi
m,

yi
m) is given by the formula

(ex, ey) 5 1Î o
i51,...,C

(xi
a 2 xi

m)2@C,

Î o
i51,...,C

(yi
a 2 yi

m)2@C2 ,

where C is the total number of particle images
present in the micrograph.

The next section describes a correlation-based
method for refining the centers of the particles
obtained using the CP2 method and also analyzes
the results obtained. A second, background equalization
method was tested but produced unreliable results.

3.1 Correlation-Based Refinement
of Particle Centers

This algorithm was inspired by the template-
matching algorithms (16,20,21), but it is more effi-
cient and accurate. Let C be the number of particle
projections detected using the CP2 method and let r
be the radius of the particles. Provided the number of
false hits and of missed particles is small, a model
particle projection built by averaging all the C
projections is more accurate than one constructed
manually by selecting one or few particles as de-
scribed in (16). The model can be cross-correlated
with the points of the entire scanned image, but
restricted to a limited search region. We take advan-
tage of the accuracy of the CP2 solution by restrict-
ing this region to a small area around the center of
each of the C particles. For a square-shaped region of
dimension 2b 1 1 pixels where b is typically set to a
value in the range of 2 to 4, the total number of
correlations performed is C(2b 1 1)2. The position
yielding the largest correlation coefficient identifies
the region in the micrograph most similar to the
reference and it is likely to be a more accurate
approximation of the true center. The two steps of
the procedure are

Step 1. Build the model particle projection. The
intensity of every pixel of the model is the average of

the C corresponding pixel intensities in all detected
particle images.

Step 2. For each of the C particles, for every
position (xb, yb) within the search box, correlate the
model particle with the micrograph in a circular
region of radius r centered at (xb, yb).

Let I denote the image on which the refinement is
to be performed, M the model particle, Ib and sI,b,
respectively, the average intensity and the standard
deviation of I inside a circle of radius r centered at
(xb, yb), N the number of pixels inside the model
particle, M the average intensity, and sM the stan-
dard deviation of the model particle. The correlation
coefficient, r, is given by the formula (15)

r 5

o
(xi,yi)[M

(I(xi 1 xb, yi 1 yb) 2 Ib) 3 (M(xi, yi) 2 M)

N 3 sI,b 3 sM
.

The new, refined center corresponds to the position
yielding the largest r. We have implemented this algo-
rithm such that if the new center is located on the border
of the search box, we allow for the search box to move in
the direction of the maximum correlation coefficient a
number of times to obtain a more accurate value for r.

The results of the correlation refinement for a test
image are shown in Fig. 10b. The particle center
coordinates after refinement approximate the true
centers better than the initial values. Analysis of a
large number of micrographs shows that correlation
with a model particle usually improves the results
produced by the Crosspoint method. For the image
shown in Fig. 10a, the average error is (0.83, 0.84)
pixels for the correlation-based refinement, as op-
posed to the (1.65, 3.37) pixel error obtained before
refinement. The time to produce the initial CP2
solution in the case of a 1280 3 1000 pixel image
(Fig. 12a) was about 18 sec on a Reality Engine
Silicon Graphics machine with a 90-MHz processor
and 128 Mbytes of main memory. The subsequent
correlation refinement step took about 15 sec.

TABLE 1
Sensitivity of the Crosspoint Method to Changes

in the Particle Radius

Radius (in pixels) Correctly identified Missed False hits

18 36 (77%) 11 (23%) 3 (6%)
20 39 (83%) 8 (17%) 2 (4%)
22 38 (81%) 9 (19%) 2 (4%)
24 42 (89%) 5 (11%) 2 (4%)
25 42 (89%) 5 (11%) 2 (4%)
26 39 (83%) 8 (17%) 3 (6%)
28 40 (85%) 7 (15%) 3 (6%)
30 39 (83%) 8 (17%) 6 (12%)

Note. Results are given for the micrograph shown in Fig. 9. The
true radius is approximately 25 pixels.
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We also designed and tested a background equal-
ization refinement method, but with unsatisfactory
results on our test images. In this method, the solution
generated by the CP2 method was used to produce an
initial set of particle centers, at which point background

FIG. 11. Sensitivity of the Crosspoint method to changes in the
number of thinning layers: (a) no thinning, (b) one thinning layer,
(c) two thinning layers. The micrograph shown contains images of
human rhinovirus (HRV) particles decorated with Fab antibody
fragments.

FIG. 12. Sensitivity of the Crosspoint method to changes in the
image pixel resolution: (a) original low-contrast image
(1280 3 1000 pixels) showing projections of several human rhino-
virus particles, (b) the result of the CP2 method applied to (a), (c)
the result of the CP2 method applied to (a) after subsampling
(640 3 500 pixels).
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variations were removed before correlation-based
refinement of the centers was performed.

3.2 The Sensitivity of the Crosspoint Method

The CP2 method is sensitive to changes in several
parameters. For example, the radius r of the virus
particle projections is a very important input param-
eter. The CP2 method cannot be used for micro-
graphs containing a mixture of different virus par-
ticles that are comparable in size (e.g., whose
diameters differ by only ,10%). Often it is difficult
even to locate the particles in the original image;
hence, errors in defining the radius are expected.

Our experience indicates that the quality of the
solution is not seriously affected for small variations
of r. Table 1 illustrates the results obtained for one
micrograph (Fig. 9).

Another solution-sensitive parameter, set by the
program user, is the number of thinning layers used
to disconnect particles that have joined into a single
cluster. An illustration of the use of the Crosspoint
method using zero, one, and two thinning layers,
respectively, is shown in Fig. 11. For most micrographs
we have tested, two thinning layers are optimal.

Three other parameters influence the CP2 solu-
tion. One is the threshold used in the marking phase
of the particle identification algorithm. The other
two are the upper and lower bounds for the size of a
cluster of marked pixels. A cluster is considered to
represent a particle if its size approximates the area
of a circle with the same radius as the particle. We
have selected optimal values for these bounds based
upon our analysis of a large number of micrographs.

4 PROCESSING LARGE IMAGES

Modern transmission electron microscopy meth-
ods now make it possible to produce very large
images, with 50–100 Mpixels (million pixels). One
micrograph may contain the projected images of a
thousand or more virus particles. Manipulating such
an image in the computer requires 50–400 Mbytes of
storage depending on the dynamic range of the
imaging device (1, 2, 3, or 4 bytes/pixel). The fact that
such images can be generated at a fairly high rate
and have to be stored creates a critical need for large
secondary storage systems and data compression
techniques.

Processing and rendering such images is a chal-
lenging proposition due to the speed and storage
limitations of current graphics workstations. For
example, rendering a 5878 3 7521 pixel image takes
about 120 sec on an SGI Power Onyx with one
processor and 128 Mbytes of memory. Histogram
equalization of the same image takes more than 200
sec, and 10 3 10 averages more than 400 sec.

Several possible solutions to this problem exist. A

graphics system with several processors and 512
Mbytes to 1 Gbyte of main memory could be used.
Parallel algorithms for image enhancement, particle
identification, and center refinement are needed to
exploit efficiently such an expensive machine. Alter-
natively, the large image can be cut into subimages
and each subimage then processed independently.

Another option is to compress the original, digi-
tized image and then to detect the initial positions of
the particles on the compressed image. Once these
positions are detected, one can cut the original image
more efficiently and conduct the refinement proce-
dure on each of the subimages, using as an initial
approximation the positions located on the com-
pressed image.

4.1 Image Compression

The size of an image can be significantly reduced
by simple compression algorithms. A lossless com-
pression method like run-length encoding (RLE) is
not very useful because it alters the contents of the
image and the Crosspoint method is not designed to
work on an encoded image.

The alternative to lossless compression is lossy
compression. Several lossy compression schemes are
possible. The simplest one is subsampling. Image
size can be decreased by a factor of m2 by using only
every mth pixel on each row and every mth row of the
image. More sophisticated algorithms involving

FIG. 13. Experimenting with a low-contrast image: (a) portion
of a 5878 3 7521 pixel image; (b) image after histogram equaliza-
tion and averaging; (c) CP method applied to image in (b); (d)
refinement of the positions detected in (c): blue circles—positions
before refinement; red circles—positions after refinement.
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wavelet transformations (19) could also be used to
compress micrograph images. Preliminary results
indicate that such transformations can be success-
fully used even for very low-contrast images in
conjunction with the Crosspoint method (Fig. 12).

4.2 A Particle Identification Algorithm Based
on Image Subsampling and Decomposition

In contrast with correlation-based methods for
which higher pixel resolution means better chances
for a more accurate match with the template, the
Crosspoint algorithm works well on subsampled
images. A 1280 3 1000 pixel micrograph containing
several human rhinovirus particle images (Fig. 12a)
was examined with the CP2 method on the original
image (Fig. 12b) and on the subsampled image (Fig.
12c; subsampling factor, m 5 2). The average error
for the coordinates of the particle centers selected
manually versus using the CP2 method in the case of
Figs. 12b and 12c, without refinement, is (0.34, 1.04)
pixels for the full-resolution image and (0.49, 1.25)
pixels for the subsampled one.

The processing of a large image involves the
following steps:

Step 1. Reduce the size of the image by a factor of
m2. Values of m 5 2 and m 5 3 (i.e., four- and
ninefold subsampling) seem sufficient for all practi-
cal purposes.

Step 2. Enhance this image by histogram equaliza-
tion and averaging.

Step 3. Specify the radius r of the particles to be
identified and use the Crosspoint method to identify
them on the image resulting after Step 2. Let (xi, yi),
i 5 1, . . . , C, denote the coordinates of the C particle
centers detected.

Step 4. Divide the original image into P subim-
ages. Several strategies can be used. One is to ensure
that each subimage has a rectangular shape and
contains roughly C/P particles. Another is to divide
the image into subimages of equal size (possibly
overlapping).

Step 5. For each subimage carry out the correlation-
based refinement algorithm described in Section 3.1.
Construct a model particle projection by averaging
the particles within that subimage. Allow the center
of particle i to move within the box with corners
(xi 2 b, yi 2 b), (xi 2 b, yi 1 b), (xi 1 b, yi 2 b), and
(xi 1 b, yi 1 b). As before, if the best correlation is
obtained when the center is located on the edge of the
refinement box, allow up to k moves of the refine-
ment box.

Step 6. Filter out particles whose best correlation
coefficient is lower than a given threshold (likely to
be false hits).

The timing results for the CP2 method in the case
of the micrograph in Fig. 12 recorded on a Silicon

Graphics workstation with a 200-MHz IP22 proces-
sor and 64 Mbytes of main memory were 18 sec for
the entire image (1000 3 1280 pixels) and 7 sec for
the subsampled image (subsampling factor m 5 2).

4.3 Image Decomposition

An alternative to image compression is to decom-
pose it into several overlapping subimages and to
apply the Crosspoint method to each subimage inde-
pendently. With the exception of histogram equaliza-
tion, the CP2 procedure does not involve any global
image transformation (such as Fourier transforms)
and it is, therefore, suitable to be applied to indi-
vidual subimages. Histogram equalization is the
only transformation affected by decomposition. By
applying histogram equalization to subimages an
improved contrast is obtained in each subimage,
closer to the optimal image contrast that would be
achieved by using, for instance, the adaptive histo-
gram equalization technique described in (17).

In contrast to the complex ‘‘cutting’’ and ‘‘sewing’’
described in (20,21), the only requirement of the
method proposed here is that each subimage include
a border region to allow for correct averaging, cluster-
ing, and box migration during the refinement stage
for all particles inside. Let r denote the radius of the
particles, 2 3 b 1 1 the length of the side of the
refinement box, and k the maximum number of box
shifts allowed during the refinement. Then, the
width of the border region should be w 5 2 3 r 1
max5r 1 1, k 3 b6. For example, a 10 000 3 10 000
pixel image, with r 5 64, b 5 4, and k 5 5, can be
decomposed into four subimages of 5193 3 5193
pixels each. In this case, the border region has the
width w 5 2 3 64 1 max565, 5 3 46 5 193 pixels and
the actual subimage has 5000 3 5000 pixels. Due to
the need to include a border region, there is a point of
diminishing return when increasing the number of
subimages into which an image is decomposed.

Special attention must be paid to processing clus-
ters located close to the border region. If a cluster is
fully contained within the extended subimage and
its center of mass is within the boundaries of the
actual subimage then it is considered to belong to the
subimage. If a cluster is fully contained in the
extended subimage, but its center of mass is inside
the border region, the cluster is not considered part
of the current subimage. Its processing will take
place in one of the neighboring subimages.

Due to the nature of the decomposition and the
fact that the center of a cluster may belong to only
one of the actual subimages, each cluster is pro-
cessed only once. Therefore, it is straightforward to
combine the results from all subimages: the list of all
particle positions for the whole image is the union of
all subimage lists.
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5. AN ENVIRONMENT FOR EXPERIMENTING WITH
PARTICLE IDENTIFICATION METHODS

The expectation that one can design a fully auto-
mated particle identification method capable of pro-
cessing micrographs produced under various condi-
tions without any human intervention seems
unrealistic at this time. What we believe can be done
at this stage is to design an environment which
supports experimenting and tuning of various meth-
ods.

Given a batch of images obtained under similar
conditions, the user needs to fine tune the general
algorithm, e.g., the number of thinning layers, the
radius of the particle, etc. Once an optimal procedure
is established, all images in the batch can be pro-
cessed automatically. Occasionally, a different se-
quence of image enhancement steps leads to better
results than the one we described in Section 2.3.1.
Figure 13a shows an image in which particles can be
identified with the naked eye only by a very astute
observer. On the enhanced images (Figs. 13b and
13c), the particles can be identified and the CP
method works well. In this case, the following se-
quence of image enhancement steps leads to the best
results: histogram equalization followed by averag-
ing, followed by another cycle of histogram equaliza-
tion and averaging steps.

To support such experimentation, the environ-
ment we have developed supports the standard
particle identification method described earlier, as
well as individual image transformations that can be
composed in random order.

EMMA is an interactive software package built
around the Crosspoint method. In addition to auto-
matic particle selection and refinement, it includes
capabilities to decompose large images and to dis-
play the subimages, to perform various traditional
image processing transforms on the digitized micro-
graphs, to select, unselect, and extract individual
particles interactively, and to store particles into
files. The transforms supported are: histogram equal-
ization, averaging, Sobel and Laplace gradient meth-
ods, high-boost filtering, colormap modification, com-
pression, and the Hough transform. The program
allows for an easy composition of such transforms in
the order specified by the user.

EMMA is built in X-Windows and Motif (21) and
consists of approximately 20 000 lines of code.

6 CONCLUSIONS AND FUTURE WORK

To improve the resolution of virus structures deter-
mined using cryoelectron microscopy methods from
20 Å to 5–10 Å, the number of virus particle projec-
tions used in the three-dimensional reconstruction
process must increase from a few hundred to several
thousands. To make better use of the biological

samples, the electron microscope must be controlled
to aim its beam at particles with positions previously
determined from low-dose, low-magnification, and
hence very noisy images. Modern devices are capable
of producing images with 100 Mpixels, or even more,
containing thousands of virus particle projections
that need to be analyzed, hence, the motivation for
the work reported in this paper.

Efforts to automate the particle identification pro-
cess have been reported in the literature, but exist-
ing methods are inefficient and none of them has
gained wide acceptance. Noise due to a variety of
sources makes particle identification very difficult.
Due to the low contrast of some of the micrographs, it
is often a challenge for the human eye to even notice
a particle in a micrograph. And it is not an easy task
to capture in an algorithm the eye’s ability to recog-
nize shapes.

The original automatic particle identification
method, the Crosspoint or CP, is described in (13). As
reported in (13), the algorithm is efficient and pro-
duces relatively accurate solutions, with acceptable
miss rates and few false hits. By exploiting the local
properties of the micrograph image, the algorithm is
capable of dealing with a varying background.

After a large number of tests, we conclude that the
particle identification algorithm works best on im-
ages enhanced by histogram equalization and aver-
aging. In this paper, we propose a refinement method
based on correlating a model particle with regions of
the image located in the vicinity of the particles
detected by the CP algorithm.

Another contribution of this paper is an algorithm
for processing large images. A compressed image is
used to obtain the initial list of particle centers.
Experiments confirm that a 4- to 16-fold lossy com-
pression does not deter the CP algorithm from
locating particle centers with sufficient accuracy.
The uncompressed large image is then decomposed
into subimages to which the refinement algorithm is
applied.

There are no obvious ways to compute the quality
of the solution provided by a particle identification
program. The best one can do is to identify manually
the location of particles on one micrograph, compare
them with those computed by the program, and
report the error. It is difficult to compare different
algorithms and programs. There are no benchmark
images and it is possible that a program which does
very well on some images may provide a poor-quality
solution for others. Likewise, there are few timing
results to allow a fair comparison of different pro-
grams. Nonetheless, an analysis of the algorithms
involved favors the CP method over methods requir-
ing Fourier transforms.

The speed of such a method is a prerequisite for
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automatic control of the electron microscope. To
avoid premature damaging of the biological speci-
men, the following approach can be used: first, a
low-dose, low-magnification image is recorded on a
slow-scan CCD camera and the digital image is used
to determine the coordinates of the virus particles;
then these coordinates are used to aim and calibrate
the electron beam to take high-magnification pic-
tures of each particle or clusters of particles, using
flood-beam or spot-beam imaging procedures (7).

Further information about the EMMA package, as
well as a number of test images, can be obtained
from http://www.cs.purdue.edu/homes/sb/Projects/
EMMA/emma.html. The software is available free
upon request.

This research has been partially supported by the National
Science Foundation Grants BIR-9301210 and MCB-9527131, by a
grant from the Intel Corporation, a grant from the Purdue
Research Foundation, a Grant-In-Aid of Research and a Summer
Faculty Fellowship from Indiana University, and by the Scalable
I/O Initiative. We thank the anonymous reviewers for many
constructive comments.

REFERENCES

1. Atallah, M. J. (1996) Private communications.
2. Baker, T. S., and Cheng, R. H. (1996) A model-based approach

for determining orientations of biological macromolecules
imaged by cryo-electron microscopy, J. Struct. Biol. 116,
120–130.
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