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Abstract

In this paper we address the problem of combining
concurrent computations with analysis and visual-
ization of structural biology data. We provide an
overview of two methods for structure determination
of spherical viruses, X-ray crystallography and elec-
tron microscopy, and discuss our e�orts to design con-
current algorithms and programs for structure de-
termination using these methods. We also present
two interactive software systems we have developed
which support processing of large data sets produced
in structural biology experiments.

1 Introduction

Biological molecules di�er in their complexity, small
proteins have several thousands of atoms, whereas
large macromolecules like viruses could have millions
of atoms. For example a protein like streptavidin
has some 7,000 atoms while the monkey tumor virus
has 900,000 non-hydrogen atoms [4]. Structure de-
termination of small molecules has become a routine
process nowadays. In contrast, the determination of
macromolecular structures remains a lengthy and dif-
�cult task.

To gain insight into biological processes scientists
need to know where the atoms are located in bio-
logical molecules and how they interact during bio-
chemical reactions. The atomic model of a macro-
molecule can be built from high-resolution (2{3 �A)
electron density maps. If all computations are ac-
curate a polypeptide chain can be traced at about
3.5 �A and individual atoms can be isolated at about

1.2 �A [4]. Structural biology uses nuclear magnetic
resonance (NMR), X-ray crystallography, and elec-
tron microscopy (EM) methods to gather information
about the three-dimensional (3D) atomic structure
of macromolecules like proteins and viruses. NMR
methods can be used to obtain 3D models of small
proteins but cannot be used to obtain detailed in-
formation about the arrangement of atoms in large
macromolecules. X-ray crystallography is the only
method to obtain secondary and tertiary structures
and processing of electron microscope images is cru-
cial for the analysis of high resolution structures of
biological molecules [4].

The 3D model of a specimen is normally repre-
sented as an electron density function sampled at the
points of a regular grid. Intricate computations, of-
ten involving parallel computers, are used to re�ne
the experimental data and produce high-resolution
electron density maps. In the model building phase
high-resolution electron density maps, information
gathered through EM studies, and chemical informa-
tion allow the structural biologist to determine the
3D atomic structure, in other words, to place atoms
and groups of atoms in the electron density \clouds".
Two and three-dimensional visual representations of
the data are invaluable at this step.

The remaining sections of this paper are orga-
nized as follows: in x2 we describe parallel algorithms
and methods for the determination of the 3D atomic
structure of spherical viruses; in x3 we present two
interactive tools we have developed and discuss as
a case study the �tting of electron density maps of
related 3D virus structures; our conclusions are sum-
marized in x4.

1



2 Concurrent Computations

for Structure Determination

of Spherical Viruses

.

The structural biology groups we are collaborat-
ing with, led by Michael G. Rossmann and Timothy
S. Baker, are interested in the analysis of viruses,
virus-receptor, and virus-antibody complexes, and
the study of new anti-viral compounds that interact
with viral capsids, interfere with viral-receptor inter-
action, or inhibit uncoating. Their studies include
rhinoviruses (HRV16), enteroviruses, human and an-
imal paraviruses, and the human immunode�ciency
virus (HIV) [5], [14]. Such studies require high-
performance computing to analyze large amounts of
experimental data and to produce atomic-level mod-
els of the viruses.

Icosahedral symmetry governs the arrangement of
protein subunits within the shells of spherical viruses.
An icosahedron is shown in Figure 2(a) in standard
orientation: three of its two-fold axes are aligned with
the axes of coordinates. Three angles de�ne the ori-
entation of the icosahedron: � { rotation in the xz
plane, from z towards x, � { rotation in the xy plane,
from x towards y, and ! (not depicted) de�nes the
orientation about the (�; �) direction. An icosahedral
asymmetric unit is shown shaded.

Structure determination aims to obtain high-
resolution electron density maps by combining exper-
imental information with a model of the virus parti-
cle. The more accurate the experimental data col-
lected, the higher the resolution of the electron den-
sity maps that can be potentially obtained. Mod-
ern sources of X-rays, electron microscopes, and data
acquisition devices such as Charge Coupled Device
(CCD) detectors have increased the data acquisition
rates. It is not unrealistic to expect thousands of
large images (e.g., 2; 000 � 2; 000 to 4; 000 � 4; 000
pixels with 16 to 24 bit/pixel) to be collected in a
few days time. Processing very large volumes of data
at speeds comparable to the data acquisition rates
poses distinctive challenges and can only be done by
exploiting concurrency.

In this section we focus on the calculations re-
quired by the Molecular Replacement Method for
phase re�nement and extension using X-ray di�rac-

tion data and on particle orientation determination
and 3D structure reconstruction from cryo-electron
microscopy data, as shown in Figures 2(b) and (c),
respectively.

2.1 Parallel Algorithms and Programs

for Phase Re�nement and Exten-

sion

Since the mid 50's X-ray crystallography has had a
profound impact on structural biology. The discov-
ery of the double helical structure of the DNA by
James Watson and Francis Crick was in
uenced by
the knowledge of the DNA di�raction patterns ob-
tained by Rosalind Franklin and Maurice Wilkins.
Max Perutz's studies of the hemoglobin, as well as
Michael Rossmann's discovery of the atomic struc-
ture of Rhinovirus 14, were based on X-ray di�rac-
tion methods. Nowadays, increasingly more complex
macromolecules and biological assemblies are inves-
tigated using new sources of intense X-radiation and
modern CCD detectors.
The X-rays scattered by biological molecules in-

fer both constructively and destructively, producing
di�raction patterns that can be recorded using photo-
graphic emulsions or, more recently, CCD detectors.
The �rst step in structure determination requires
measuring the structure factors. Macromolecules pro-
duce millions of re
ections while small proteins typ-
ically produce tens of thousands of re
ections. Each
re
ection is characterized by a structure factor con-
sisting of an amplitude, determined by the strength
of interference at that point, and a phase determined
by the relative time of arrival of the scattered ra-
diation to the recording medium. The information
about the phases is lost when the di�raction pattern
is recorded and therefore, phases cannot be measured
directly from X-ray di�raction images. Several meth-
ods to solve the so-called phase problem are used. In
the Heavy Atom method an assumption is made that
the phases of the di�racted X-rays are close to the
phases which would be observed if only the heavy
atoms were present. This approach is generally not
applicable to proteins, since the heavy atom contribu-
tion to scattering is small with respect to the protein.
In the Isomorphous Replacement and related meth-
ods phase information is retrieved by making isomor-
phous structural modi�cations to the native protein,
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usually by including a heavy atom or changing the
scattering strength of a heavy atom already present
and then measuring the di�raction amplitudes for the
native protein and each of the modi�ed cases. If the
position of the additional heavy atom or the change
in its scattering strength is known then the phase
of each di�racted X-ray can be determined by solv-
ing a set of simultaneous phase equations. Methods
which use such a strategy are Single Isomorphous
Replacement (SIR), Multiple Isomorphous Replace-
ment (MIR), Single Isomorphous Replacement with
Anomalous Scattering (SIRAS) and within the last 15
years, the Multiple-wavelength Anomalous Di�rac-
tion method (MAD).

We have developed a suite of parallel algorithms
and programs [7] for phase re�nment and extension
based on the Molecular Replacement (MR) method
[18] introduced by Michael G. Rossmann and David
Blow in 1963. The objective of the MR method is to
determine rotation and translation transformations
to position a model structure into the unit cell so
that the experimental di�raction data correlate best
with calculated data. A low-resolution model of a
virus, for instance a hollow sphere or a related virus
with a known structure, provides the starting point
for the MR method. The initial model is re�ned by
taking into account the symmetry of the virus. Two
types of symmetry are of interest for structure deter-
mination by molecular replacement. The crystallo-
graphic symmetry property implies that an operator
applies throughout the whole, in�nite crystal. The
crystallographic asymmetric unit is the smallest unit
from which the crystal can be generated by symme-
try operations of its group. The non-crystallographic
symmetry is related only to a localized volume within
the crystal.

The MR method utilizes the similarity (or identity)
of structure in di�erent parts of the crystallographic
asymmetric unit, caused by the repetition of the
same subunit structure in the formation of a whole
molecule [18]. Let N be the non-crystallographic re-
dundancy, i.e., the number of identical replicas of the
asymmetric unit that make up the whole structure.
For example, in the case of icosahedral viruses, N is a
multiple of 60. Solving the phase problem reduces to
solving a set of equations which represent the condi-
tion that the electron density distribution within the
volume of the unit cell is identical within all subunits

related by crystallographic and non-crystallographic
symmetry and it is constant outside these volumes.
Solving these equations for the unknown phases is
an iterative process, known as phase re�nement and
extension.

The basic computational procedure for phase re-
�nement and extension is depicted in Figures 1 and 2
(c). The most intensive computations are required by
the calculation of the molecular envelope of the virus.
In this process the electron density value at a given
grid point of the electron density map situated inside
the protein shell is replaced by the average of the elec-
tron density values of all points related to the given
point by non-crystallographic symmetry. Let nx, ny,
and nz be the dimensions in grid points of the elec-
tron density map. The total number of operations
required by the electron density averaging process is
k�N�nx�ny�nz, where k is a constant. For a high-
resolution map, each of the nx, ny, nz values may be
in the 500-800 range. The constant k may also be
quite large, re
ecting the fact that, once a symme-
try transformation is applied to a point, the resulting
coordinates may not correspond to an integral grid
point and therefore some interpolation is necessary
to determine the value of the electron density at that
point.

The main issues in the parallelization of the elec-
tron density averaging algorithm are data distribu-
tion to minimize communication and load balancing.
The entire electron density map is partitioned into 3D
volumes called bricks which are distributed to proces-
sors to preserve locality of reference. Load balancing
is non-trivial due to the fact that averaging is carried
out only for points within the protein shell, whereas
the density of points inside the solvent or the nu-
cleic acid is 
attened, i.e., assigned a constant value.
Therefore distributing equal numbers of bricks to the
processors does not guarantee load balance.

After an averaged electron density map is obtained,
a 3D Fourier transformation from real to reciprocal
space is carried out. Experimental and calculated
structure factors are combined: experimental struc-
ture factor amplitudes replace calculated ones, while
calculated phases are preserved. Next, the structure
factor data is transformed back to real space using
another 3D Fourier transformation to complete a cy-
cle of re�nement. When phase improvements from
one iteration to the next are no longer observed, the
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resolution is increased and the process continues.
For large structures, at high resolution, a single

cycle of re�nment requires tens of CPU-hours on the
fastest sequential machines. Running on a large par-
tition of a distributed memory MIMD system like the
Intel Paragon or the IBM SP2 reduces the execution
time to less than one hour. For a typical structure
hundreds of such cycles are needed and parallel com-
puting opens entirely new possibilities. Details are
provided in [15] and [7] where we document our ef-
fort to reduce the computing time required for phase
re�nement and extension by two to three orders of
magnitude.

2.2 Processing of Cryo-Electron Mi-

croscopy Data

In correlation with X-ray di�raction, biochemical, ge-
netic, immunological, and model building studies, im-
age processing of electron micrographs is a powerful
tool for investigating the basis of molecular events in
living systems. In general, this method gives struc-
tural information at low resolution, usually enough
to reveal the shape of individual subunits, but rarely
enough to determine the path of the polypeptide
chain within a protein molecule. E�orts are currently
being made to bridge the resolution gap between X-
ray crystallography and electron microscopy by in-
creasing the resolution of electron microscopy meth-
ods.
Using electron microscopy methods, scientists are

routinely able to produce electron density maps at 20
�A resolution. Maps at higher resolution have been
obtained for th �rst time in 1997. The structure
of the core protein of the hepatitis B virus at 7.4
�A resolution [3] and the 4-helix bundle of the same
virus at 9 �A resolution [6] were obtained by cryo-
electron microscopy. Low-resolution electron density
maps use a few hundred virus particle projections se-
lected from micrographs, whereas the high-resolution
maps require thousands of such projections. Clearly,
a ten to �fty-fold increase in the amount of data used
for 3D structure reconstruction from electron micro-
graphs requires new, possibly parallel and distributed
computational methods.
The images of individual particles in electron mi-

crographs are approximate projections of the speci-
men in the direction of the electron beam. The prob-

lem of determining the specimen structure from the
micrographs is equivalent to the problem of recon-
structing a spatial density distribution from its pro-
jections. Fourier theory provides a simple approach
to �nding the 3D structure of an object from its pro-
jections. The Projection Theorem [8] connects the
Fourier transform of the object with the transforms
of its projections. It states that the Fourier transform
of the projected structure of a 3D object is equivalent
to a 2D central section of the 3D Fourier transform of
the object, normal to the direction of projection. In-
deed, the Fourier transform of the function �(x; y; z)
is:

F (X;Y; Z) =

Z Z Z
�(x; y; z)e2�i(xX+yY+zZ)dxdydz

.

The central section Z = 0 of the transform is given
by:

F (X;Y; 0) =
R R

�(x; y)e2�i(xX+yY )dxdy,
where �(x; y) =

R
�(x; y; z)dz.

Figures 1 and 2(b) illustrate the basic steps of the
3D reconstruction process. The �rst step is the se-
lection (boxing) of individual particle images from
one or several digitized micrographs. These images
provide the di�erent views needed to �ll in the 3D
Fourier transform of one virus particle. The number
of views required at this step depends on the desired
resolution of the �nal structure and on the size of
the virus. The next step is to determine for each im-
age its center and the orientation of the particle that
produced it. Best results are usually obtained in the
case of highly symmetrical particles such as icosahe-
dral viruses because the high symmetry (see Figure
2 (a)) leads to redundancies in the Fourier transform
data which in turn aids the orientation search pro-
cess. The 3D Fourier transform of a particle is cal-
culated from 2D Fourier transforms of the projected
views which are equivalent to central sections of the
3D Fourier transform perpendicular to the direction
of projection. Interpolation methods are required to
obtain the values of the 3D transform on a regular
grid. Finally, the last step is to compute the electron
density function from the 3D Fourier transform by an
inverse Fourier transformation.
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The computationally demanding steps are (a) the
determination and the re�nement of the orientations
of the virus particle projections and (b) the calcula-
tion of the 3D Fourier transform from values on cen-
tral sections. Parallel algorithms for (a) have been
implemented by Johnson & al. [11] who report that,
in addition to an increase in resolution, the signal-
to-noise ratio of the resulting maps is improved. We
are developing a new parallel algorithm [2] for orien-
tation determination, based on an improved sequen-
tial version of of the Polar Fourier Transform (PFT)
method [1]. The goal of our algorithm is to reduce the
computing time of the PFT method by as much as
three orders of magnitude by taking advantage of the
speed, storage capacity, I/O bandwidth, and latency
of high-performance parallel systems. The basic idea
of the algorithm is brie
y described next.

The input to the algorithm consists of an Image
Pool (IP) containing n 2D particle images whose ori-
entations have to be determined. In addition, the
algorithm uses as input a 3D electron density map
which serves as a high signal-to-noise model. Such
a model may be a computer-generated model, a low-
resolution map previously computed, or a map cor-
responding to a similar, already known, structure.
From this model, a Reference Database (RDB) con-
sisting ofm di�erent views is generated. For instance,
for an icosahedral particle, these views cover one half
of the asymmetric unit of the structure (e.g., 1=120th
of an icosahedron, from � = 69 to 90� and � = 0 to
32�), as shown in Figure 2 (a). The images in RDB
are correlated against those in the IP to determine for
each image in IP a best match in RDB. The angu-
lar coordinates of the best match thus found provide
a solution for the unknown orientation of the corre-
sponding IP image.

The execution time T0 for one iteration of the
search process is T0 = I �n�m, where I is the time
required to compare an image in IP with one in RDB.
The algorithm discussed in [2] (i) uses compressed
data, (ii) performs a multi-phase, multi-resolution
search of the database, and (iii) supports concurrent
processing of projections. Each of these elements are
discussed below. (i) Compression: I can be reduced
by storing and comparing compressed images instead
of the original ones. The speedup due to compression
is SC = C, where C is the compression factor, since
the time to compare two images is proportional to

their size. In addition to a reduction of I , the space
necessary to store the images is also considerably re-
duced. (ii) Multi-phase, multi-resolution search: in-
stead of building a high-resolution RDB and trying
to �nd in it a best match for each image in IP, we
propose a three-phase scheme. In the �rst phase a
low-resolution RDB consisting ofm1 elements is built
(e.g., at 3� angular increments). The search time
in this RDB is T1 = I � n � m1. In the second
phase, a medium-resolution RDB of size m2 is gener-
ated (e.g., at 1� angular increments). The search in
this new database is restricted to a small subset of size
r2�m2, with r2 � 1, around the best match obtained
in the previous phase. The search time in this phase
is T2 = I � n� r2 �m2. In the third phase, a high-
resolution RDB (e.g., at 0:3� angular increments) is
generated and the search is restricted to a subset of
size r3 �m3, with r3 � 1. The total search time for
the new scheme is: T = I�n�(m1+r2�m2+r3�m3).
The speedup due to multi-resolution search is:

SM =
T0
T

=
1

(m1=m3 + r2 �m2=m3 + r3)
�

1

r3

(assumingm = m3 in the calculation of T0). (iii) Par-
allel search: given P processors, each could process
a fraction n=P of images in IP for a speedup of
SP = P . The implementation of the parallel search
requires solutions to two problems: work allocation
and data management and distribution. Solutions to
these problems are discussed in detail in [2]. The
speedup due to the cumulative e�ect of all improve-
ments previously enumerated is:

S = SC � SM � SP =
C � P

r3
.

For instance, for C = 4; P = 20, and r3 = 0:01, the
total speedup of the search process obtained with our
method is 8; 000.
For problem (b) a sequential algorithm using

Fourier-Bessel inversion was proposed in [8]. How-
ever, as previously pointed out, increasing the reso-
lution of the 3D reconstruction requires several thou-
sands individual virus particle projections. Time and
memory constraints make sequential methods unsuit-
able for this task. We are currently designing concur-
rent programs for 3D reconstruction based on a new
method proposed by R. E. Lynch at al. [13]. The
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input for this method consists of n particle projec-
tions and their orientations given by the angles �; �;
and ! (see Figure 2 (a)). A 2D Fourier transform
is applied to each individual projection. The orien-
tation of each projection is used to determine the
corresponding central section in the 3D Fourier do-
main (according to the Projection Theorem). Next,
an interpolation procedure is used to determine the
values of the electron density Fourier transform at
regular grid points. In addition to parallelism, this
method has a number of advantages over the method
described in [8]. All computations are performed in
cartesian coordinates, thus reducing their complex-
ity. Also, the symmetry of the structure to be recon-
structed is not built-in the algorithm, which means
that, in principle, this method could be used in the fu-
ture to investigate structures with no symmetry (e.g.,
nucleic acid).

3 Data Visualization and Com-

putation Steering

Graphics plays an important role in the three stages
of the structure determination: data collection, data
analysis, and model building. Numerical simulations
and scienti�c experiments produce information hard
to comprehend. Image processing and data visual-
ization help convey this information to the scientist
in a form which can be better exploited by the hu-
man analytic capabilities and then further employed
to steer computations. Image processing refers to any
technique which alters and displays, in more tangible
form, the information contained in images. In the
case of structural biology, it extends the scientist's
ability to study imaged biological structure because
details that may be invisible to the naked eye can be
clearly revealed. An obvious bene�t of clearer im-
ages and structural information is an enhanced un-
derstanding of biological structure-function relation-
ships. Data visualization is the transformation of nu-
merical information into visual representations. The
result is a simple and e�ective medium for analyz-
ing complex information. The main challenge in the
visualization of biological data is the sheer volume
of data. A high-resolution electron density map of a
large virus may contain 500� 500� 500 grid points.
Any real-time transformation of such a volume re-

quires e�cient computational algorithms and power-
ful graphics engines.
In this section we describe two software tools we

have developed for structural biology. The �rst
one, Emma, is an image processing tool developed
around the Crosspoint method for automatic selec-
tion of spherical virus particle images from low-
contrast cryo-electron micrographs. The second one,
Tonitza, supports visual data exploration and vari-
ous computations required during the data analysis
phase. As a case study, we discuss the �tting of elec-
tron density maps of related virus structures.

3.1 Processing of Electron Micro-

graphs

The �rst step in the 3D reconstruction process by
means of electron microscopy is the selection of in-
dividual particle projections from electron micro-
graphs. This step is generally performed manually
and because such a task can be very tedious, mostly
low-resolution reconstructions (e.g., 20 �A) of rela-
tively small virus particles have been computed from
fewer than 100 particle images.
It has been estimated (and recent results at 7{9�A

resolution with Hepatitis B virus capsids [3], [6] have
con�rmed this estimate) that approximately 2,000
particle images are necessary for the reconstruction
of a virus with a diameter of 1,000�A at 10�A resolution
[19]. Hence, manual selection methods are becoming
impractical. The need for computer-aided particle
detection methods provided the motivation for devel-
oping Emma [16].
At high magni�cation, noise in electron micro-

graphs of unstained, frozen-hydrated macromolecules
is unavoidable and makes automatic detection of par-
ticle positions a challenging task. For high-resolution
reconstruction work it is necessary to analyze large
numbers of micrographs at speeds comparable to the
data acquisition rates. An ideal automatic particle se-
lection method must produce a reliable solution and
be computationally e�cient.
Template matching methods have been proposed

by several groups [9], [17], [19]. They produce rea-
sonable results only when applied to images with a
good signal-to-noise ratio, i.e., formed with medium
to high electron dose, and after background variations
are minimized or removed. However, it is commonly
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agreed that it is di�cult to identify peaks in the cross-
correlation maps computed from such low-dose mi-
crographs, and peak discrimination is extremely sen-
sitive to 
uctuations of the average intensity value
throughout the image.
The Crosspoint method we have developed com-

bines traditional image processing techniques with
heuristics and a new algorithm for the detection of
particle centers. The time complexity of various algo-
rithms used by this method depends linearly on the
number of pixels in the digitized micrograph. The
method is described in detail in [16]. Its main steps
are summarized below and illustrated in Figure 3.

(a) Image Enhancement. The digitized micrograph is
enhanced by histogram equalization, followed by im-
age averaging to smooth out local 
uctuations of pixel
intensities. High-resolution 3D reconstructions usu-
ally include close-to-focus, i.e., low-contrast images in
which the high-resolution details are not destroyed by
the electron beam. Histogram equalization helps im-
prove image contrast by redistributing the gray levels
in the image more uniformly over the gray-scale range
(Figures 3 (a) { (c)). The role of neighborhood av-
eraging is to smooth out high-intensity 
uctuations
which tend to be sharp and scattered throughout the
entire area of projected particle images (Figure 3 (d)).

(b) Particle Identi�cation. Our particle identi�cation
algorithm consists of two phases: marking and clus-
tering. The image is scanned horizontally in a �rst
pass and then vertically in a second pass. A local
contrast value is computed at each pixel based on
information about the radius of the particles. The
result of the marking phase (see Figure 3 (e)) is a
binary image obtained by a thresholding operation.
A pixel with a high local contrast value is consid-
ered to belong to a particle projection (in which case
it is marked, i.e. set to 1), whereas a pixel with a
low local contrast value is assumed to belong to the
background (therefore left unmarked, i.e., set to 0).
In the clustering phase, the connected components

in the binary image resulting from the marking phase
are detected. These are subsequently �ltered based
on their size. For those components that are not re-
jected in the �ltering process a center of mass is com-
puted and assumed to correspond to the center of a
virus particle image.

(c) Postprocessing. A particle identi�cation method

is a�ected by two types of errors: missed particles
and false hits. The role of the post-processing phase
is to attempt to improve the quality of the �nal solu-
tion by reducing the number of missed particles and
false hits. Figure 3 (f) depicts the �nal solution pro-
duced by the Crosspoint method in the case of the
micrograph shown in Figure 3 (a).

Emma is interactive software environment built
around the Crosspoint method. In addition to au-
tomatic particle selection and re�nement, it includes
capabilities to decompose large images and to dis-
play sub-images, to perform various traditional im-
age processing transforms on digitized micrographs,
to select, unselect, and extract individual particles in-
teractively, and to store particles into �les. It allows
for an easy composition of such transforms in random
order.

3.2 Tonitza

Tonitza is an interactive package for visualization,
analysis, and data manipulation for computational
structural biology. It has a modular structure, con-
sisting of several components: input/output, visual-
ization, and computation modules accessible to the
user via a uni�ed Motif interface. The main inter-
face style is a direct-manipulation one: operations
are invoked by actions performed on the visual rep-
resentations of the objects.

Objects displayed can be manipulated in various
ways using the mouse or the dials. Depending on the
representation, objects may be rotated, translated,
scaled, and/or clipped with planes. The appearance
of objects may be customized via editors.

The input/output (I/O) module is responsible for:
reading/writing data �les from/to disc, automatic �le
format recognition, and handling of I/O errors. The
program accepts as input structured data produced
by scienti�c and engineering software. It provides
support for a variety of data formats used in X-ray
crystallography and electron microscopy. In addition,
it accepts as input image and movie �les. Tonitza also
facilitates the generation of new data sets, images,
and movies.
Speci�c computations support data analysis. They

may be used independently or in conjunction with the
visualization module to obtain information about the
contents of the data. Some of the most frequently
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used computational functions supported by Tonitza
are described next.

Data rotation allows computation of rotated maps
by resampling the original data. This feature is use-
ful, for example, in the case of three-dimensional elec-
tron density maps representing virus particles recon-
structed by electron microscopy methods. Such par-
ticles usually exhibit a high degree of symmetry and
it is important to be able to select sub-volumes for vi-
sualization based on the symmetry elements relative
to the original data set (usually given in standard
orientation as shown in Figure 2 (a)). This feature
also allows clipping the data volume with planes in
arbitrary orientations.

The correlation and scaling of two data sets allows
the user to compare the two sets and to adjust one
relative to the other by re-sampling based on the vari-
ation of a scaling factor. Determination of the scaling
factor requires a sequence of computational steps as
described in the case study presented in x3.3.

The composite map feature allows one to compute
a linear combination of two data sets. The new map
can be subsequently displayed in various representa-
tions and may give some insight about the relation-
ship between the two maps. A special case is the dif-
ference of two data sets. Figure 4 (e) shows a shaded
surface representation of the Ross-River virus [5] in
its native form together with Fab antibody fragments
attached to it. The surface of the antibodies corre-
sponds to a map computed as the di�erence between
data representing the complex form of the virus with
antibodies attached and the native virus structure.

Tonitza supports 2D and 3D visualization of multi-
variate data. Examples of some of the representations
available and how they may be used to investigate bi-
ological structures follow.

Planar sections allow the display of data in sec-
tions parallel to the planes of coordinates. Using the
data rotation feature previously described, arbitrary
sections through the data volume may also be ob-
tained. The data in planes may be represented as a
set of contour lines at user-de�ned levels, as a contin-
uous scale map, by mapping data values to colors, or
using both representations superimposed. The trans-
fer function that maps a given scalar data value to
a color can be interactively edited using a colormap
editor. Stacks of contours plots can be created for a
set of sections to allow interpretation from a 3D per-

spective. Figure 5 (a) shows a contour map for the
Ross-River virus, with electron density contoured at
three levels. The map illustrates the overall organiza-
tion within the multi-layered virus structure [5]. The
positions of the icosahedral two-, three-, and �ve-fold
axes are shown. Figure 5 (b) depicts an equatorial
section (through the same virus structure) as a con-
tinuous scale map. The map shows regions of mem-
brane pinching which are suggested to be the regions
of transmembrane connections [5]. The arrows in Fig-
ure 5 (b) indicate two such regions. A stack of con-
tours for a Coxsackievirus B3 mask map is shown in
Figure 5 (c). The map reveals the spatial arrange-
ment of particles within an asymmetric unit.

Spherical sections are similar to continuous scale
maps, except that in this case data values are interpo-
lated on spheres instead of planes. Such a representa-
tion is useful when one is interested in visualizing the
distribution of scalar values at various radiae within
the data volume. Sweeping such sections through the
entire volume may reveal particular properties which
cannot be inferred from planar representations. For
instance, in the case of the Ross-River virus spherical
sections reveal the glycoprotein spikes as 
ower-like
structures that project outward from the virus struc-
ture and have a hollow base [5]. Figure 5 (d) shows
one such section viewed along a �ve-fold symmetry
axis.

Isosurfaces are the 3D analog of 2D contour lines.
They provide information about sets of points within
a data volume that have associated a particular scalar
value. In Tonitza, isosurfaces can be displayed as
wireframe or shaded, for the entire data volume or
for selected sub-volumes. Analysis of high-resolution
features requires a �ne polygonalization of the surface
under study. To enable real-time spatial manipula-
tion of such a surface we have combined several tech-
niques. Starting with the classical Marching Cubes
method [12], we have added a preprocessing step for
speeding up the computation of the isosurfaces [10]:
gradient vectors used for the interpolation of the sur-
face normals are calculated once and then reused for
reconturing. Figures 4(e) and (f) show a combination
of shaded isosurfaces for a Ross-River virus particle.
The surfaces in Figure 4(f) reveal the three-fold na-
ture of the virus spikes and the bilobal nature of each
of the spike petals [5].

A few lessons learned during the design and the im-
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plementation of Tonitza are discussed next. Tonitza
started out as a general interactive scienti�c visual-
ization tool, running on virtually any workstation. It
included commonly used 2D and 3D representations,
such as contours, continuous scale maps, isosurfaces,
histograms, etc. The �rst challenge occurred when
we attempted to visualize high-resolution maps with
20 to 250 million grid points. Using memory map-
ping of large data �les proved to be a signi�cant step
to improve the I/O performance. Next, there was the
need for interactive manipulation of the objects dis-
played, for viewing selected volumes from arbitrary
positions, and for animating individual frames. E�-
cient algorithms were not enough to achieve the real-
time e�ect, given the large data sets. This motivated
a major change in the design of Tonitza: portabil-
ity was traded for interactivity and we redesigned
the package to take full advantage of graphics hard-
ware by using the OpenGL library. Finally, generality
was traded for usefulness and ease of use in molecu-
lar modeling, which led us to the current version of
Tonitza. A considerable fraction of the e�ort to de-
sign and implement this package as it is now has gone
into the user interface, the I/O, and the computation
modules which are speci�c to molecular modeling.

3.3 Case Study: Fitting Electron

Density Maps

The study of new anti-viral compounds that inter-
act with viral capsids is a component of the design
of anti-viral drugs and requires the ability to dis-
play and manipulate in real-time native and complex
3D structures with antibodies attached. For exam-
ple, cryo-electron microscopy studies showed that the
structure of the Ross-River virus inferred from several
crystallographic experiments was incorrect [5]. The
problem was detected by comparing surface features
of the Ross-River virus from two data sets with and
without bound antibody fragments.
Usually, 3D electron density maps for various struc-

tures are computed separately and before a native
structure and its complex form can be displayed to-
gether, one of the maps has to be \�tted" to the
other. In other words, a scaling factor must be deter-
mined and applied to one of the maps to bring it to
the same scale as the other map. Finding the optimal
scaling factor to be used for resizing requires comput-

ing the correlation of the two data sets. The corre-
lation procedure is iterative and consists of: de�ning
the correlation regions within the protein (there is
little interest in correlating densities within the nu-
cleic acid core) and the scaling range, determining an
optimal scaling factor that maximizes the correlation
coe�cient, re�ning it, and scaling one map relative to
the other. In Tonitza this sequence of computation
and visualization steps bene�ts from the integration
of data transformations and data visualization into a
single, specialized tool.

The correlation procedure, as implemented in
Tonitza is described next. Let Map 1 denote an elec-
tron density map representing a native virus struc-
ture, and Map 2 an electron density map represent-
ing the same virus with antibodies attached. The
centers of the two maps must coincide. Map 1 serves
as a reference and Map 2 is scaled to �t Map 1. The
correlation procedure used for �tting consists of three
steps.

(a) De�ne the correlation volume. Computing the
correlation of two data sets is an expensive operation
when each volume consists of ten to a hundred million
grid points. Due to the special structure and high-
symmetry of spherical viruses, the correlation volume
may be considerably reduced by taking into account
only the protein regions. The average density inside
the protein shell is larger than inside the nucleic acid
core. This step allows the user to specify pairs of ra-
diae which de�ne shells in which the correlation is to
be performed based on a plot of the average electron
density as a function of the particle radius. Such a
plot may be a 2D graph or a surface. Figure 4 (a)
illustrates the the average electron density as a func-
tion of the radius for a Ross River virus reconstruc-
tion. Based on this graph, the user may interactively
select two spherical annuli where the correlation is to
be performed.

(b) Compute an optimal scaling factor, that is, a num-
ber for which Map 1 and Map 2 scaled correlate the
best. For a quick, rough estimate, the correlation
volume may be restricted even further to a few slabs
(groups of planes or sections) within the previously
de�ned shell. Figure 4 (b) shows a plot of the corre-
lation coe�cient as a function of the scaling factor.
The optimal value of the scaling factor is one which
maximizes the correlation coe�cient. In this exam-
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ple the best correlation coe�cient is 0.85 for a scaling
factor of approximately 0.94.

(c) Display the correlation coe�cient as a function of
the particle radius. Such a display allows to check
the correctness of the initial correlation regions and
to rede�ne them if needed (Figures 4 (c) and (d)).
If such a re�nement takes place, steps (b) and (c)
are repeated iteratively until the desired accuracy is
reached.
In practice, the spatial �tting of two maps is usu-

ally followed by a linear scaling of the electron density
values such that both maps have the same average
electron density. After the two maps are �tted, they
can be displayed together and manipulated in real-
time.
The result of �tting two data sets representing

Ross-River electron density data with and without
antibody fragments attached are illustrated in Fig-
ures 4 (e) and (f). The blue surface was computed
using the native virus structure data set. This was
the reference set and the other set was scaled to �t
it. The orange surface represents the surface of the
antibodies and was computed as a di�erence between
the data set containing antibody information and the
native data set after a scaling of the former to �t the
latter. Figure 4 (f) shows a close-up view of one of
the virus spikes which reveals the binding sites of the
antibody fragments.

4 Conclusions

Computational structural biology relies heavily on
high-performance computing and graphics to produce
atomic level models of biological macromolecules such
as viruses. Recent developments of data acquisition
devices and experimental methods pose new chal-
lenges: processing of very large amounts of data at
speeds comparable to the data collection rates, main-
taining large databases of experimental data, creat-
ing new methods to extract more information from
the raw data, providing integrated environments, and
allowing the scientist to steer the computations e�-
ciently.
Designing concurrent algorithms and programs is

the logical choice to deal with large amounts of exper-
imental data and intricate models in structure deter-
mination. Interactive environments which integrate

data visualization and computations are needed.
The two packages presented in this paper were de-

veloped in collaboration with structural biologists at
Purdue University and other centers. Emma is cur-
rently used by researchers in the Biology Department
at Purdue University and Karolinska Institute in Swe-
den. Tonitza is used by researchers in the Biology
Department at Purdue University and the National
Institutes of Health.
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GLOSSARY

Structure determination: �nding the spatial
coordinates of all atoms in a macromolecule.

Primary structure: the sequence of amino acids
in a protein.

Secondary structure: di�erent regions of the
amino acid sequence form local regular secondary
structures such as alpha helices or beta strands.

Tertiary structure: is formed by packing
secondary structures into compact globular units
called domains.

Crystal: regular arrangement of atoms, ions,
or molecules.

Unit cell: structural pattern from which a
crystal is conceptually built up by its continuing
translational repetition.

Asymmetric unit: part of a symmetric object
from which the object can be generated by
symmetry operations.

Structure factor: complex number associated
with each re
ection point of a di�raction pattern.
It is characterized by its amplitude and phase.

Real/Reciprocal Space: the electron density
domain and its Fourier transform domain.

Electron microscope: instrument that converts
electron radiation scattered by a specimen into
recorded images.

Electron micrograph: image obtained with the
electron microscope.

Charge Coupled Device (CCD): imaging device used
to collect X-ray di�raction images and micrographs.

Cryo Fixation: high-resolution electron
microscopy technique in which biological specimens
are rapidly frozen in a thin layer of glassy ice
so as to avoid structural changes.

TONITZA

Tonitza is a tool for analysis and visualization
of large structural biology data sets.

The main features of Tonitza are:
� Computations and visualization are
combined under a common framework to facilitate
computational steering and e�ective analysis of
the data at various stages of the structure
determination process.
� It has an open-ended design, new
representations and algorithms can be easily
incorporated.
� It is written in C, is portable,
it runs on Unix workstations that support
X-Windows, Motif, and OpenGL.
� The code is available at no cost.

EMMA

Emma is an image processing tool for electron
microscopy.

The main features of Emma are:
� It implements the Crosspoint method
for automatic selection of spherical virus
particle images from low-contrast electron
micrographs.
� The Crosspoint method [16]
has a high success rate and rarely produces
false hits.
� Supports for processing of large images
by operating on sub-images or on compressed
images.
� It is written in C, it is extensible
and portable. It runs on platforms that
support X-Windows and Motif.
� The code is available at no cost.
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Figure 1: The main steps in 3D atomic structure determination in X-ray crystallography and electron
microscopy.
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Figure 2: Structure determination of spherical viruses: (a) Icosahedral symmetry governs the arrangement
of protein subunits within a spherical virus. An icosahedron is shown in standard orientation with an
icosahedral asymmetric unit shaded. (b) Schematic representation of the processing steps from 2D images
to the 3D structure of a virus particle by means of electron microscopy. (b1) Extract individual particle
images from electron micrograph(s). (b2) Determine the location of each particle center. (b3) Determine the
orientation of each particle view. (b4) Carry out 3D reconstruction in the Fourier domain. (b5) Compute
3D electron density map. (c) Schematic representation of the processing steps required by the MR method.
(c1) Use X-ray di�raction data and an initial low resolution model to derive a �rst set of structure factors for
an asymmetric unit. (c2) Apply symmetry operators to derive structure factors for the entire unit cell. (c3)
Compute an electron density map from structure factor data by applying an inverse Fourier transform. (c4)
Average the computed electron density among all asymmetric units to obtain a more accurate map. (c5)
Obtain a new structure factor data set from the electron density map obtained in (c4) by applying a Fourier
transform. (c6) Combine calculated and observed structure factors and repeat (c2){(c6) until convergence
of phases is achieved.
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Figure 3: Automatic virus particle identi�cation in electron micrographs using the Crosspoint method [16]
(a) Portion of low-contrast micrograph of frozen-hydrated sample of reovirus cores. (b) The micrograph after
histogram equalization. (c) Gray level histograms before (top) and after (bottom) histogram equalization.
(d) The micrograph in (b) after neighborhood averaging with a 10 � 10 �lter. (e) Contents of the binary
image after pixel marking (green) superimposed on the micrograph in (d). (f) The result of the Crosspoint
method.
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Figure 4.  Application: fitting an electron density map corresponding to a native Ross−River virus structure (blue) to a separately computed 
map representing the virus with antibodies attached (orange). (a) Plot of the average electron density of the native virus particle as a function
of its radius. Annuli where correlation is to be performed are selected at this step. (b) Plot of the correlation coefficient as a function of
the scaling factor. The optimal scaling factor yields the highest correlation. (c) Using the optimal scaling factor obtained in (b), the
correlation coefficient is computed and plotted against the particle radius. Original correlation annuli are shown. (d) Correlation annuli
are redefined to match the regions where correlation was highest. For refinement of the optimal scaling factor, step (b) is repeated
for the new annuli. (e) Fitted maps after scaling. (f) Close−up view of one of the virus spikes reveals the binding sites of the antibody
fragments. Ross−River virus data courtesy of  Prof. Timothy S. Baker of Purdue University.
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Figure 5: Using Tonitza. (a) Equatorial contour map for the Ross-River virus. Lines indicate the positions
of the two-, three-, and �ve-fold symmetry axes. (b) Equatorial continuous scale map for the Ross-River
virus. Arrows indicate regions of membrane pinching. (c) Stack of mask contours for a Coxsackievirus B3
asymmetric unit. (d) Spherical section of Ross-River virus viewed along �ve-fold axis.
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