
Cassandra’s Twin: What Does the Data Predict?

Ioana Boier
ioanaboier@gmail.com

September 5, 2016

Abstract

This paper examines what type of insights can be extracted from a given dataset. This analysis is
intended to encourage those collecting data to engineer their collection processes with data usability
in mind. It is also meant to caution researchers against the pitfalls of trying to squeeze out more
information from data than the data actually warrants. The ideas presented are illustrated through
a concrete example of using CDC’s Behavioral Risk Factor Surveillance System (BRFSS) dataset to
identify risk factors associated with hypertension. A complete end-to-end predictive modeling process
is described in detail from data conversion and pre-processing, to model building, and interpretation
of results. Python code to process the data as well as Matlab code to build, train, and evaluate
the models are included in full and are sufficiently general in nature to be used for other analyses
beyond hypertension.

1 Introduction

Most often, when given a problem to solve, we gather relevant data from various sources to come up with
a solution. In this paper we address the reverse question of what type of insights could be extracted from
a prescribed dataset. This analysis serves two main purposes: (a) as guidance for those collecting data
(through surveys or other generic means) to consider the usability of the information collected and (b)
to caution researchers against the temptation to squeeze out more information than the data actually
warrants.

To make the illustration concrete, let us consider the topic of predictive modeling in the context of
the Behavioral Risk Factor Surveillance System (BRFSS) dataset [5]. The goal is to demonstrate that
although it may be possible to design predictive models that can be trained successfully (as measured
by standard scientific criteria) on general-purpose data, such models may be of limited use in practice
without additional problem-specific information.

The paper is organized as follows: Section 2 provides details regarding the nature of the data and it
includes a discussion of the challenges it raises in the context of prediction; Section 3 combines a review
of literature with a categorization of the main types of predictive modeling that have been performed on
such data; a concrete prediction model for hypertension is developed and analyzed in detail in Section 4;
final remarks conclude the paper in Section 5.

2 The BRFSS Data

Administered by the Centers for Disease Control and Prevention (CDC), the BRFSS survey is designed
to collect prevalence data from adult U.S. residents pertaining to risk behaviors and preventive practices
that could impact their health. It comprises an annual component (i.e., questions asked every year), a
biannual one (i.e., question asked only every other year), plus optional information that is gathered at
the discretion of each state. The main goal of the survey according to the CDC is to collect data on
actual behaviors that could be used in the development and evaluation of health promotion and disease
prevention programs.

After collection and final aggregation by the CDC, the data appears in tabular format with each row
representing a survey record (i.e., a sample) and each column corresponding to a reported variable. The

1

values of the variables are either directly coded based on the participant responses or calculated from
values of other directly coded variables. For example, RFBMI5 is a calculated categorical variable
that can take values 1, 2, or 3 depending on whether another real-valued variable BMI falls in the
overweight range (greater than 25.0) or not or it is missing. In its own turn, the BMI variable derives
its values from the weight and the height reported by each survey participant.

Certain characteristics of the data are important for predictive modeling purposes:

1. Recall bias: the data is only as accurate as the recollections or estimates given by people partici-
pating in the survey. This implies that all data, including the calculated measures (such as the BMI
in the previous example) can be hampered by inaccuracies. The degree of noise can vary within
subgroups (e.g., women tend to underreport their weight by a larger percentage than men [10]).

2. Selection bias: the sample is selected from the adult, civilian, non-institutionalized population
of the U.S. which means that some information such as the number of sick days could be underes-
timated. Also, any conclusions drawn from this data may be difficult to generalize to groups living
outside the U.S.

3. Inconsistency: data may not be directly comparable between surveys for a variety of reasons
(e.g., change in weighting methodology of the survey itself, change in the wording of questions,
measurement unit discrepancies (e.g., fruit intake, vegetable servings), collection lags (some data
is collected annually, some every other year).

4. Memorylessness: since there is no identification information, the progression of specific individ-
uals or groups over time cannot be monitored based on this data.

3 Predictive Modeling Based on the BRFSS Data

The scientific literature abounds with BRFSS data analyses of various kinds, including predictive models.
The topics broadly fall into the following categories:

1. Diagnostic tools: a significant number of studies have tackled the problem of identifying the most
relevant risk factors that can ”predict” a particular outcome. The outcomes can be considered
at the individual level (e.g., what health, environmental, or socio-demographic factors are most
associated with cancer [11] or cancer survival [19], diabetes [24], depression [25], hypertension [23],
obesity [10, 8]) or at the level of communities (e.g., level of emergency preparedness [1]). These
are typically implemented using supervised learning methods by defining the response variable(s)
as the answer to one or a combination of survey questions and using a subset of the remaining
questions/answers as input variables.

2. Trend analysis: some demographic aspect such as education levels or disease prevalence [14, 7]
are typically predicted at state level. Subsequent analysis is typically conducted to uncover the
endogenous characteristics of states that outperform their predicted values by significant amounts
and ultimately, to understand the environmental, policy, or other factors that set them apart so
they could be replicated and applied elsewhere.

3. Gap filling and data correction: survey and/or self-reported data have deficiencies, as previ-
ously discussed. Yet, when supplemented with additional information or corrected for bias, they
can drive powerful insights. For example, in [15] the authors use BRFSS data on fruit and veg-
etable consumption to determine percentage of state populations that meet federal recommended
intakes. Models are not built directly from the BRFSS data which used different units over time,
but from a separate CDC database of dietary recalls (NHANES [17]) and is subsequently applied
to BRFSS information to fill in gaps and allowing monitoring state-level progress towards national
goals. Another example pertaining to BRFSS data correction is provided in [10] where regression
models that can estimate the bias between self-reported and professionally measured weight and
height are developed using the NHANES dataset and subsequently used to correct the BRFSS
information and predict obesity prevalence.

2

4. Collective supervision: some authors are using the BRFSS data to correlate social media mes-
sages with survey outcomes and to transform unsupervised topic models into collectively super-
vised, i.e., using existing aggregated survey data to inform the inferred topics [3].

5. Scenario simulation: models based on the BRFSS data are developed to simulate policy out-
comes (e.g., how would changing Medicare insurance eligibility criteria affect various states [2]).

4 Hypertension: Pervasive and Dangerous

According to the World Heart Federation [22], hypertension is defined as systolic blood pressure at or
above 140mmHg and/or diastolic blood pressure at or above 90mmHg. There are almost a billion people
worldwide who suffer from it and this number is estimated to increase by roughly 50% over the next
decade.

Once it sets in, hypertension is straightforward to measure and diagnose. It is known or suspected
to be a major risk factor in cardiovascular and other serious conditions. Yet, its own risk factors are
not fully understood. For example, essential hypertension could be related to genetic predispositions,
lifestyle choices (stress, diet, exercise) and other factors that have not been clearly identified at this
point. Secondary hypertension can be caused by factors like diseases, medications, etc., also not fully
understood.

4.1 Problem Statement

The main goal of this exercise is to investigate the opportunities and limitations offered by the BRFSS
survey data to identify risk factors associated with hypertension. An additional goal is to provide a
general analysis blueprint for anyone wishing to make similar characterizations of other conditions based
on this data.

To solve this problem, we first build a prediction model similar to the diagnostic-type tools mentioned
in the previous section. Second, we analyze its usefulness and limitations.

4.2 Data Curation

There are several steps in the data curation process:
1. Raw data retrieval: there are many years worth of data in the BRFSS database. Due to

differences in survey methods, data prior to 2011 and after are not directly comparable. Data is provided
in two formats (SAS and TXT) which may require conversion. A small R script useful for converting
data from SAS format to CSV is shown in Appendix A.

We consider two BRFSS annual survey datasets from 2013 and 2015 (the 2014 dataset does not
include the high blood pressure question used to define the response variable). The 2015 set is used
for model building and testing and the 2013 one for additional out-of-sample testing. There are 491773
records of 336 variables in the 2013 data. The raw 2015 data consists of 441456 records of 330 variables
each. Unless otherwise noted, any further references to BRFSS data in this section pertain to the 2015
dataset. The 2015 codebook published by the CDC contains details regarding the values and ranges of
each variable [4].

2. Feature selection and cleanup: From a machine learning standpoint, our problem is a binary
classification one. To solve it, we need to define a set of predictor variables that will be used to predict
the class of the response variable (in this case, whether a person has high blood pressure or not). Such
a formulation may seem odd at first since one could just consider measuring a person’s blood pressure
to determine whether they are hypertensive or not. However, the actual goal is hypertension prevention
and in this context, the hope is that finding the factors associated with the condition could offer some
insight into what may lead to it. The Python notebook used to load the CSV files containing the raw
data and to select and process the features of interest is also included in Appendix A.

Response variable: corresponds to the calculated variable RFHY PE5, i.e., ”Adults who have been told
they have high blood pressure by a doctor, nurse, or other health professional”. For readability, we

3

recode its name as HY PERT for the remainder of the paper. The original values for this variable
were 1 - NO, 2 - YES, 9 - Refused or missing.

Input variables: are selected in steps, an initial manual one and one or more automatic ones. In
a first pass, taking domain knowledge into account, we reduce the original 330 variables to 31
corresponding to raw or calculated information that is suitable to use for the problem at hand (see
Table 1). Specifically, we choose to ignore outright several types of data:

(a) Irrelevant: variables pertaining to date and time of the survey, geographic information, landline
or cellphone, healthcare provider, household composition, wears seatbelt, etc.

(b) Duplicate: between calculated variables and raw ones, only one type referring to a particular
topic is kept (e.g., BMI is used, but WEIGHT and HEIGHT are left out; ALCOHOL is
kept, but average alcohol consumption, binge drinking, and related ones are left out).

(c) Medically similar or presumed unrelated: conditions for which hypertension is a known risk
factor like stroke and myocardial infarction are removed from the analysis. General statements
regarding the health of a person like poor health or good health are also removed. All
cancer-related variables are left out (several other types of illnesses are kept, but we eliminate
cancer due to the complex relationships between malignancy and hypertension [16]) which
would require more careful model engineering. See also Section 4.4 for discussion regarding
prediction of one condition in the presence of another.

(d): Undersampled: variables for which the overwhelming frequency of response was ”Not asked
or missing” (e.g., estimated intensity of first activity).

Cleanup: before proceeding to the automated variable selection and modeling phases, the data corre-
sponding to the selected variables (input and output) is cleaned as follows:

YES–NO responses: all values representing the answer YES to a survey question are mapped
to the value 1 and all values representing the answer NO to a survey question are mapped
to the value 0. For example, as mentioned previously, the response variable’s original values
were 1 - NO, 2 - YES, 9 - Refused or missing. After the cleanup, they become 1 - YES
(meaning ’has hypertension’), 0 - NO, and 9 - Refused or missing. This is more in line with
the binary classification best practice of encoding the presence of something we’re looking for
(e.g., hypertension) with 1 and its absence with 0. While not necessary, it allows for easier
inspection of the data without having to constantly refer to the codebook.

Unavailable responses: all numerical values corresponding to DON’T KNOW, REFUSED, MISS-
ING, or NOT ASKED (typically 7 or 9 in the raw data) are mapped to the value 9. All blank
entries in the raw data are mapped to −99.

Categorical variables: with the exceptions noted in the previous two categories, all categorical
values are kept as in the original data.

Numerical variables: with the exception of missing values which are coded as previously described,
all values are kept in original form. Note that the only numerical variables used in this example
are the ones pertaining to food intake; they are all reported in the same unit (times per day)
and take values in the same range (0− 9999).

Following the standardization of variable values, we proceed to remove all records that have any
blank entries in their composition. We also remove all records that have missing information for the
hypertension question. This leaves a total of 335583 records from the original set. An alternative
would have been to keep missing values and handle them at modeling time, but for the purpose of
this exercise we decided to operate without missing data from the start.

After cleaning the data, the model building can proceed. As we will see in the next section, the
models themselves can be used to automatically perform further feature selection.

4

Index BRFSS Name New Name
1 AGE G AGE
2 SEX SEX
3 RFBMI5 BMI
4 MARITAL MARITAL
5 EDUCAG EDUC
6 RACE RACE
7 INCOMG INCOME
8 TOTINDA EXERCISE
9 RFCHOL CHOLEST
10 RFDRHV5 ALCOHOL
11 ASTHMS1 ASTHMA
12 MEDCOST MEDCOST
13 CHCCOPD1 COPD
14 ADDEPEV2 DEPRESSION
15 RENTHOM1 RENTOWN
16 EMPLOY1 EMPLOY
17 INTERNET INTERNET
18 SMOKE100 SMOKE
19 FTJUDA1 JUICE
20 FRUTDA1 FRUIT
21 BEANDAY BEAN
22 VEGEDA1 VEGGIE
23 DIABETE3 DIABETES
24 HLTHPLN1 HEALTHPLAN
25 HAVARTH3 ARTHRITIS
26 CHCKIDNY KIDNEY
27 VETERAN3 VETERAN
28 BLIND BLIND
29 DECIDE COGNITION
30 DIFFWALK DIFFWALK
31 USENOW3 TOBACCO

Table 1: Input features selected by manual process. New names are assigned for readability.

4.3 Model Building

The choice of learning model always entails trying out multiple methods. Each has its own assumptions
and performance characteristics and it makes sense to explore several such methods to produce the best
one (or combination) for a given dataset. In the context of binary classification, two good candidates are
logistic regression and decision trees. While logistic regression assumes a hyperplane decision boundary
that separates the data, decision trees partition the feature space into axes-aligned hyper-boxes. Both
methods are quite fast and easy to implement, making them suitable benchmarks for more complex
models. In this section, we illustrate both.

4.3.1 Logistic Regression

In logistic regression, the hypothesis function has the form:

hβ(x) = g(βTx)

where g is the logistic function:

g(z) = 1
1+e−z

5

The output of the hypothesis hβ(x) can be interpreted as the estimated probability that y = 1 given a
new input data point x. Imagine that for some new record x in the 31−dimensional space of the features
defined in Table 1 we have hβ(x) = 0.7. This number would indicate that the probability that the
corresponding person has hypertension is 70%, i.e., p(y = 1|x;β) = 0.7. Training such a model means
finding the values of the parameter vector β that maximize the log-likelihood function:

`(β) =
∑n
i=1(yilogp(xi) + (1− yi)log(1− p(xi)))

with p(x) = p(y = 1|x;β) = hβ(x) and xi samples in the training data. The parameter vector β has
m+ 1 components (coefficients), where m is the number of predictor variables (m = 31 in this example)
and one additional coefficient for the intercept:

hβ(x) = g(βTx) = g(β0 + β1x1 + · · ·βmxm)

Statistical packages like R and Matlab that implement logistic regression typically return not only
the estimated values of these coefficients, but also other statistics useful in the analysis. In particular,
each coefficient comes with a t-statistic to test the null hypothesis that the coefficient is zero against
the alternative that it is different from zero, as well as a corresponding p-value. Hence, if one of these
p-values is greater than 0.05, it can be concluded that the corresponding feature is not significant at the
5% significance level given the other features in the model. As shown in Section 4.4, this information can
be used to automatically select relevant features. Even when logistic regression is not the final predictive
model, it can be used as a first step to reduce the feature space.

4.3.2 Decision Trees

An important aspect not mentioned in the previous section was the linear dependence implied by the
hypothesis function. While it is possible to enhance the dependence formulation to include higher order
terms, such enhancement is manual and requires knowledge of the data to avoid blindly adding a large
number of terms. Decision trees make no linearity assumptions about the data. They are appealing
as they accommodate features of various kinds (numerical, categorical, etc.) without explicit need for
extensive pre-processing. Additionally, they offer an intuitive representation that is easier to grasp
compared to regression coefficients.

The leaf nodes in the tree correspond to class labels (0, 1, i.e., hypertension or no hypertension, for
our example). Each interior node corresponds to a predictor variable and a binary decision rule on the
possible values of that variable (e.g., obese or not, fruit intake above or below a threshold). The most
relevant feature with respect to some measure of relevance appears at the root of the tree. The tree
can be mapped to a set of rules starting at the root and following each branch towards a leaf. Once a
decision tree is built, new data can be classified based on its features by simply following the flow of
control defined by the tree. Decision trees can also be used for feature screening by simply considering
the most important features as being the ones appearing closest to the root (no coefficients or p-values
to analyze in this case) so they too, can be used for feature selection.

4.4 Results and Discussion

4.4.1 Logistic Regression

Matlab code for implementing a logistic regression classifier given training data in matrix format (rows
correspond to samples and columns to variables; the response variable appears in the last column) is
shown in Appendix B. The function trainLogisticClassifier() returns a trained classifier and its validation
accuracy based on k-fold cross-validation. Besides the data itself, the function also takes as input the
name of the variables (headers), corresponding indicators of which variables are categorical and which
are not, and the value k for the k-fold validation. The trained classifier can subsequently be used to
classify new data. In particular, it is applied to data from another year (2013).

The coefficients β of the classifier are calculated and returned along with the corresponding p-values.
The regression is performed in several iterations to remove insignificant features:

6

1. Use the initial 31 features manually selected and evaluate the p-values for each of the corresponding
regression coefficients. Eliminate features with p-values above 0.05. This step leads to a dataset
of 329016 samples each with 24 features that are used in the second iteration.

2. Use the reduced set of features from the previous iteration to compute new regression coefficients
and p-values. If necessary, repeat this step several times until all p-values are below 0.05.

The coefficients obtained after two iteration and their p-values are shown in Appendix C. Note that
the categorical features in the data are automatically encoded as indicator variables with their first value
used as reference. For the indicator variables showing insignificant coefficients at the 5% level, we can
either perform additional lumping of categories (e.g., from six marital status categories down to two:
married nor not) or we can completely remove the original variable if many of its indicator components
are deemed insignificant.

The final set of 24 variables is shown in Table 2.

Index BRFSS Name New Name
1 AGE G AGE
2 SEX SEX
3 RFBMI5 BMI
4 MARITAL MARITAL
5 EDUCAG EDUC
6 RACE RACE
7 TOTINDA EXERCISE
8 RFCHOL CHOLEST
9 RFDRHV5 ALCOHOL
10 MEDCOST MEDCOST
11 CHCCOPD1 COPD
12 ADDEPEV2 DEPRESSION
13 INTERNET INTERNET
14 SMOKE100 SMOKE
15 FTJUDA1 JUICE
16 FRUTDA1 FRUIT
17 DIABETE3 DIABETES
18 HLTHPLN1 HEALTHPLAN
19 HAVARTH3 ARTHRITIS
20 CHCKIDNY KIDNEY
21 VETERAN3 VETERAN
22 BLIND BLIND
23 DIFFWALK DIFFWALK
24 USENOW3 TOBACCO

Table 2: Remaining input features selected automatically after logistic regression.

4.4.2 Decision Trees

Matlab code for implementing a decision tree classifier given training data in the same matrix format
as before is shown in Appendix B. Similar to the logistic case, the function trainTreeClassifier() returns
a trained classifier and its validation accuracy based on k-fold cross-validation. Besides the data itself,
the function also takes as input the variable headers, the categorical flags, and the value k for the k-fold
validation. The trained classifier is subsequently applied to the 2013 dataset.

The function cvLoss() in Matlab is used to determine the largest pruning level that achieves a value
of the classification error close (within some predefined threshold) to the error returned by the full tree
and we proceed to prune the tree to this level. Figures 1 and 2 show the classification trees before and
after pruning.

7

Figure 1: Full classification tree using 24 predictor features as input.

4.4.3 Performance Measures

Validation accuracy from 10-fold cross-validation on the 2015 data is summarized in Table 3; confusion
matrices and related measures for the 2013 test set are shown in Fig 3.

Method # Features Accuracy (%)
Logistic 31 71.7
Logistic 24 71.5
Logistic 7 70.9

Tree 22 levels 24 70.9
Tree 12 levels 24 70.9

Table 3: Accuracy of classification models based on 10-fold cross-validation using 2015 data.

In terms of overall prediction accuracy, the methods presented here are comparable to those reported
in recent literature [23, 12]. Note the larger specificity values compared to recall ones – these are likely
a result of the class imbalance in the data (there are a total of 164023 samples in the hypertensive class,
whereas the healthy class contains 26% more, i.e., 207304 samples). More sophisticated sampling of
the original data would help alleviate this issue. Also note AUC or area under the Receiver Operator
Characteristic (ROC) curve at over 70%. As pointed out in the Framingham study ??, while no specific
standard exists many screening tools in use have this statistic at or above 70%. For comparison, the
AUC for the more robustly setup Framingham score was reported at 78.8% ??.

4.4.4 Further Analysis

Up to this point we have two relatively simple models of hypertension prediction that perform similarly to
one another and at the same level or not much worse than more complex models (e.g., neural networks)
reported in the literature [23]. We observe age to be a main discriminator based on the tree model,
along with cholesterol, diabetes, and BMI. Difficulty walking, arthritis, and gender also seem to have
some predictive powers according to these models, although it is not clear whether some, like difficulty
walking, are consequences of hypertension rather than risk factors.

A next step could be to drill further down into the selected features and find out if more sophisti-
cated models would be better suited to capture the true decision boundaries in the data. Yet, another

8

Figure 2: Pruned classification tree.

possibility would be to pause and ask if the BRFSS data by itself without additional information can
ever supply us with the necessary information to build a usable model of risk factors for hypertension.

One of the first hits that comes up in Google when researching hypertension-related predictive models
is the Framingham Heart Study [9]. It includes an online risk score calculator for the incidence of
hypertension which is based on an earlier study [18]. The calculator takes into account age, gender,
BMI, blood pressure, smoking, and parental hypertension information to predict a person’s risk of
hypertension within the next 1, 2, and 4 years. The fact that four of their six predictor variables overlap
with the ones that surfaced from our models is encouraging (the other two are not available in the BRFSS
data). Interestingly, however, their study is based on non-hypertensive individuals aged 20 to 69 without
diabetes at baseline. In our setup, diabetes appears as an important discriminator in the decision tree.
Thus, it would be natural to wonder about the relationship between hypertension and diabetes. Why
was it left out in the Framingham study? Should we have done the same? It turns out that the two
frequently occur together and that there is actually substantial overlap in their etiology [6]. While a full
understanding of common causes and disease mechanisms remains an open problem, it seems reasonable
to question any model that would use diabetes as a ”predictor” of hypertension. Hence, our next step is
to see what happens if we switch the roles of the two in the tree model: make DIABETES the response
variable and HYPERT one of the inputs. The results are shown in Figure 4. Sure enough, hypertension
appears as the top discriminating feature in the new tree and the prediction accuracy goes up to 85.8%!

Next, let us return to the original hypertension model (i.e., use HYPERT as the response variable)
and remove from the data all records of individuals who are diabetic (for whom DIABETES = 1). In
other words, we would like to see how the predictions would change if we controlled for diabetes just like
the Framingham study did. As expected, the top features no longer include diabetes, but age, cholesterol,
and BMI remain among the most discriminative. The 10-fold cross-validation accuracy is 70.2% for this
tree (25 levels) and 70.3% for the pruned version (9 levels). The latter is shown in Figure 5.

Finally, we can also use the 7 features of the tree in Figure 2 as inputs to the logistic regression.
These are: AGE, CHOLEST, BMI, DIABETES, DIFFWALK, ARTHRITIS, and SEX. The performance
of the logistic classifier remains virtually unchanged (71.0%) while the feature set is much reduced. The
coefficients of this model are shown in Appendix C.

To a certain extent, we can view these last results as a quick, back-of-the-envelope confirmation
of the association between hypertension and these other factors that have also been highlighted by
more complex, more in-depth prior studies. However, we cannot confuse association with causation
and we cannot say, based on these models alone, that they have the power to predict the incidence of

9

Figure 3: Confusion matrices for classification with 24 features and associated measures using 2013 data.

hypertension, no matter how sophisticated the underlying learning algorithm becomes. The BRFSS data
simply does not support such a conclusion. Even if parental history and blood pressure (the missing
predictors present in the Framingham scoring method) were included in the survey, we would still lack
a critical piece: the ability to construct an ”aging” model for those who develop hypertension versus
those who don’t. Anyone who’s read or watched Moneyball [13] can recognize that the player stats
crunched into predictive models by Billy Beane and his team were not generic: they were associated
with identifiable people whose performance over time, in different environments (e.g., Fenway Park vs.
Dodger Stadium) was traceable.

We contend that we need more such data to develop usable clinical models. The actual identity of
the people surveyed need not be known, but interviewing the same person over time and being able to
follow their data is critical.

5 Conclusions

An ever increasing number of institutions and individuals collect and make available data for almost
all measurable aspects of life. When observational data is used to make predictions, especially health-
related ones, it is important for model developers to understand the limitations of the data and clearly
state the effects of those limitations on the capabilities of their models. In particular, prediction and
etiology must not be mistaken for one another [21]. Predictive models of the kind highlighted in this
paper or in the references surveyed are purely descriptive in nature. If they are good, they can be used
to ”guess” that a certain outcome is dependent on a set of input variables by learning from training data.
Such models do not have the power to establish causality and the language used to present them should
carefully avoid such claims. Additionally, when multiple conditions are present, domain-knowledge is
necessary to control for each condition independently. Finally, the incidence of a medical condition is
difficult to predict from static, point-in-time snapshots that do not provide a traceable time dimension
to the data.

According to Greek mythology, beautiful Cassandra could predict the future with hundred percent
accuracy and yet, nobody believed her. While that seems like a very frustrating situation, we cannot
help but wonder whether the opposite could be equally or even more harmful. Imagine Cassandra’s
twin who makes much less accurate predictions, yet everybody believes her. In many domains, this is a
situation we can hardly afford.

10

Figure 4: Pruned classification tree after reversing the roles of hypertension and diabetes variables. This
tree predicts diabetes labels from a set of input features including hypertension.

References

[1] Ablah, E. et al., ”Factors Predicting Individual Emergency Preparedness: a Multi-state Analysis of
2006 BRFSS Data”, Biosecur Bioterror., 2009, 7(3):317-30.

[2] http://slideplayer.com/slide/4941002/

[3] , Benton, A. et al., ”Collective Supervision of Topic Models for Predicting Surveys with Social
Media”, Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[4] http://www.cdc.gov/brfss/annual data/2015/pdf/codebook15 llcp.pdf, ”BRFSS 2015 Codebook
Report”.

[5] http://www.cdc.gov/brfss/, ”Behavioral Risk Factor Surveillance System”.

[6] Cheung, B.M and Li, C., ”Diabetes and Hypertension: Is There a Common Metabolic Pathway?”,
Curr Atheroscler Rep., 2012, 14(2): 160–166.

[7] , Fan, A.Z. et al., ”State Socioeconomic Indicators and Self-Reported Hypertension Among US
Adults, 2011 Behavioral Risk Factor Surveillance System”, Prev Chronic Dis, 2015,12:140353.

[8] , Finkelstein, E.A. et al., ”Obesity and Severe Obesity Forecasts Through 2030”, American Journal
of Preventive Medicine, 2012, 42(6): 563–570.

[9] framinghaheartstudy.org, ”Framingham Heart Study”.

[10] Jain, R.B., ”Regression Models to Predict Corrected Weight, Height and Obesity Prevalence from
Self-reported Data: Data from BRFSS 1999–2007”, International Journal of Obesity, 2010, 34:1655–
1664.

11

Figure 5: Hypertension classification tree after controlling for diabetes.

[11] Jerant, A. F. et al., ”Age-related Disparities in Cancer Screening: Analysis of 2001 Behavioral Risk
Factor Surveillance System Data”, Annals of Family Medicine, 2004, 2(5), 481–487.

[12] , Lee, B.J. and Kim, J.Y., ”A Comparison of the Predictive Power of Anthropometric Indices for
Hypertension and Hypotension Risk”, PLoS One, 1014, 9(1):e84897.

[13] Lewis, M., ” Moneyball: The Art of Winning an Unfair Game”, 2003.

[14] Luo, W. et al., ”Is Demography Destiny? Application of Machine Learning Techniques to Accurately
Predict Population Health Outcomes from a Minimal Demographic Dataset”, PLoS One., 2015,
10(5): e0125602.

[15] Moore, L. et al., ”Using Behavioral Risk Factor Surveillance System Data to Estimate the Percentage
of the Population Meeting US Department of Agriculture Food Patterns Fruit and Vegetable Intake
Recommendations”, Am. J. Epidemiol., 2015.

[16] Mouhayar, E. and Salahudeen, A., ”Hypertension in Cancer Patients”, Tex Heart Inst J., 2011,
38(3): 263265.

[17] http://www.cdc.gov/nchs/nhanes/nhanes questionnaires.htm, ”National Health and Nutrition Ex-
amination Survey”.

[18] Parikh, N.I. et al., ”A Risk Score for Predicting Near-term Incidence of Hypertension: the Fram-
ingham Heart Study”, Ann Intern Med. 2008,148(2):102–10.

[19] , Rohan, E.A. et al., ”Health Behaviors and Quality of Life Among Colorectal Cancer Survivors”,
J Natl Compr Canc Netw., 2015, 13(3): 297302.

[20] , Seirawan, H., Parsimonious prediction model for the prevalence of dental visits. Community Den-
tistry and Oral Epidemiology, 2008, 36: 40–408.

[21] Zalpuri, S. et al., ”Association vs. Causality in Transfusion Medicine: Understanding Multivariable
Analysis in Prediction vs. Etiologic Research”, Transfus Med Rev., 2013, 27(2):74–81.

[22] world-heart-federation.org

12

[23] Wang, A. et al., ”Predicting Hypertension without Measurement: A Non-invasive, Questionnaire-
based Approach”, Expert Systems with Applications, 2015.

[24] Wojcik, K. et al., ”Identifying Populations at High Risk for Diabetes With the Behavioral Risk
Factor Surveillance System, Rhode Island, 2003”, Prev Chronic Dis., 2010, 7(4): A86.

[25] , Yoon, S. et al., ”Using a Data Mining Approach to Discover Behavior Correlates of Chronic
Disease: A Case Study of Depression”, Stud Health Technol Inform., 2014, 201: 7178.

13

Appendix A: Data Preprocessing Code

I used an R script to convert data in the original SAS format to CSV:

brfss <- sasxport("BRFSS_2015.XPT")

write.csv(brfs, file="brfss2015.csv")

I used Python to load the CSV data file and perform operations on the variables. Below is an extract
of the Python notebook I used to select features and standardize their values.

#--

python notebook to process BRFSS data in CSV format for use in

the predictive modeling of hypertension risk factors

#

Author: Ioana Boier

Date: Sep 2016

#--

import pandas as pd

Flags for data generation

predictHyp = 1 # 1 - predict hypertension, 0 - predict diabetes

controlDiab = 0

iteration = 1 # 1 - all variables; 2 - variables after logistic elimination

contribute = False # output data to file or not

read raw data from CDC BRFSS file (previously converted from SAS to csv format)

year = ’2015’

root = ~/Projects/CDC/data/brfss’

df = pd.read_csv(root + year + ’.csv’, encoding=’cp1252’)

output some raw data info

print("Number of rows:", len(df))

print("Number of columns (variables in the survey):", len(df.columns))

print(df.columns)

keep some columns of interest (potential predictors of hypertension)

if (year == ’2015’):

drinkColumn = ’x.rfdrhv5’

else:

drinkColumn = ’x.rfdrhv4’

if (predictHyp == 1):

inp = ’diabete3’

response = ’x.rfhype5’

else:

inp = ’x.rfhype5’

response = ’diabete3’

if iteration == 1:

raceColumn = ’x.race’

columnsKeep = df[[’x.age.g’, ’sex’, ’x.rfbmi5’, ’marital’, ’x.educag’, raceColumn, ’x.incomg’,

’x.totinda’, ’x.rfchol’, drinkColumn, ’x.asthms1’, ’medcost’, ’chccopd1’, ’addepev2’,

’renthom1’, ’employ1’, ’internet’, ’smoke100’, ’ftjuda1.’, ’frutda1.’, ’beanday.’,

’vegeda1.’, inp, ’hlthpln1’, ’havarth3’, ’chckidny’, ’veteran3’, ’blind’, ’decide’,

’diffwalk’, ’usenow3’,

14

response]]

else:

raceColumn = ’x.raceg21’

if (controlDiab == 0):

columnsKeep = df[[’x.age.g’, ’sex’, ’x.rfbmi5’, ’marital’, ’x.educag’, raceColumn,

’x.totinda’, ’x.rfchol’, drinkColumn, ’medcost’, ’chccopd1’, ’addepev2’,

’internet’, ’smoke100’, ’ftjuda1.’, ’frutda1.’,

inp, ’hlthpln1’, ’havarth3’, ’chckidny’, ’veteran3’, ’blind’, ’diffwalk’, ’usenow3’,

response]]

else:

columnsKeep = df[[’x.age.g’, ’sex’, ’x.rfbmi5’, ’marital’, ’x.educag’, raceColumn,

’x.totinda’, ’x.rfchol’, drinkColumn, ’medcost’, ’chccopd1’, ’addepev2’,

’internet’, ’smoke100’, ’ftjuda1.’, ’frutda1.’,

’hlthpln1’, ’havarth3’, ’chckidny’, ’veteran3’, ’blind’, ’diffwalk’, ’usenow3’,

response]]

function to re-map data values from src_values to val_new

and to replace missing (NaN) values with na_val

def cleanColumn(df, val_src, val_new, na_val):

df.replace(val_src, val_new, inplace=True)

df.fillna(na_val, inplace=True)

print(df.value_counts())

return df

function to control for diabetes in a given variable

def controlDiabetes(df, colDiab, na_val):

df.loc[colDiab==1] = na_val

print(df.value_counts())

return df

process each variable according to its values

naVal = -99

oVal = 9;

process AGE (x.age.g) column

variable = ’x.age.g’

nothing to do

process SEX (sex) column

variable = ’sex’

nothing to do

process BMI (x.rfbmi5) column

variable = ’x.rfbmi5’

if (variable in columnsKeep):

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [1, 2, 9], [0, 1, oVal], naVal)

process MARITAL (marital) column

variable = ’marital’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [9], [oVal], naVal)

else:

columnsKeep[variable] =

15

cleanColumn(columnsKeep[variable], [1,2,3,4,5,6,9], [1,0,0,0,0,0,naVal], naVal)

process EDUCATION (x.educag) column

variable = ’x.educag’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [9], [oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1,2,3,4,9], [0,0,0,1,naVal], naVal)

process RACE (x.race) column

variable = raceColumn

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [9], [oVal], naVal)

else:

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [9], [naVal], naVal)

process INCOME (x.incomg) column

variable = ’x.incomg’

if (variable in columnsKeep):

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [9], [oVal], naVal)

process EXERCISE (x.totinda) column

variable = ’x.totinda’

if (variable in columnsKeep):

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [2, 9], [0, oVal], naVal)

process CHOLESTEROL (x.rfchol) column

variable = ’x.rfchol’

if (variable in columnsKeep):

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [1, 2, 9], [0, 1, oVal], naVal)

process HEAVY DRINKER (x.rfdrhv5) column

variable = drinkColumn

if (variable in columnsKeep):

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [1, 2, 9], [0, 1, oVal], naVal)

process ASTHMA (x.asthms1) column

variable = ’x.asthms1’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [9], [oVal], naVal)

else:

columnsKeep[variable] = cleanColumn(columnsKeep[variable], [1,2,3,9], [1,1,0,naVal], naVal)

process MEDICAL COST (medcost) column

variable = ’medcost’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

16

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process COPD/BRONCHITIS (chccopd1) column

variable = ’chccopd1’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process DEPRESSION (addepev2) column

variable = ’addepev2’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process OWN/RENT (renthom1) column

variable = ’renthom1’

if (variable in columnsKeep):

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 3, 7, 9], [1, 2, 3, oVal, oVal], naVal)

process EMPLOYMENT (employ1) column

variable = ’employ1’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [9], [oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1,2,3,4,5,6,7,8,9], [1,2,3,3,5,oVal,7,8,oVal], naVal)

process INTERNET (internet) column

variable = ’internet’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process SMOKER (smoke100) column

variable = ’smoke100’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

17

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process DIABETES (diabete3) column

variable = ’diabete3’

if (variable in columnsKeep):

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [2, 3, 4, 7, 9], [0, 0, 0, oVal, oVal], naVal)

process HEALTH PLAN (hlthpln1) column

variable = ’hlthpln1’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process ARTHRITIS (havarth3) column

variable = ’havarth3’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process CHCKIDNY (chckidny) column

variable = ’chckidny’

if (variable in columnsKeep):

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

process VETERAN (veteran3) column

variable = ’veteran3’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process BLIND (blind) column

variable = ’blind’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

18

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process DECIDE (decide) column

variable = ’decide’

if (variable in columnsKeep):

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

process DIFFWALK (diffwalk) column

variable = ’diffwalk’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 7, 9], [1, 0, naVal, naVal], naVal)

process TOBACCO (usenow3) column

variable = ’usenow3’

if (variable in columnsKeep):

if iteration == 1:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 3, 7, 9], [1, 2, 3, oVal, oVal], naVal)

else:

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 3, 7, 9], [1, 2, 3, naVal, naVal], naVal)

process HYPERTENSION (x.rfhype5) column

variable = ’x.rfhype5’

if (variable in columnsKeep):

columnsKeep[variable] =

cleanColumn(columnsKeep[variable], [1, 2, 9], [0, 1, naVal], naVal)

if controlDiab:

columnsKeep[variable] =

controlDiabetes(columnsKeep[variable], df[’diabete3’], naVal)

process FRUIT JUICE (ftjuda1.) column

variable = ’ftjuda1.’

if (variable in columnsKeep):

columnsKeep[variable].fillna(naVal, inplace=True)

#print(columnsKeep[variable].value_counts())

process FRUIT (frutda1.) column

variable = ’frutda1.’

if (variable in columnsKeep):

columnsKeep[variable].fillna(naVal, inplace=True)

#print(columnsKeep[variable].value_counts())

process BEANS (beanday.) column

variable = ’beanday.’

if (variable in columnsKeep):

columnsKeep[variable].fillna(naVal, inplace=True)

19

#print(columnsKeep[variable].value_counts())

process GREENS (grenday.) column

variable = ’grenday.’

if (variable in columnsKeep):

columnsKeep[variable].fillna(naVal, inplace=True)

#print(columnsKeep[variable].value_counts())

process ORANGES (orngday.) column

variable = ’orngday.’

if (variable in columnsKeep):

columnsKeep[variable].fillna(naVal, inplace=True)

#print(columnsKeep[variable].value_counts())

process VEGETABLES (vegeda1.) column

variable = ’vegeda1.’

if (variable in columnsKeep):

columnsKeep[variable].fillna(naVal, inplace=True)

#print(columnsKeep[variable].value_counts())

remove rows with missing values

cleanData = columnsKeep

for col in columnsKeep.columns:

cleanData = cleanData[cleanData[col] != naVal]

write clean data to .csv file

if contribute:

if (predictHyp == 1):

if (controlDiab == 1):

suffix = ’_hycd’

else:

suffix = ’_hy’+str(iteration)

else:

suffix = ’_db’+str(iteration)

cleanData.to_csv(root + year + suffix + ’_extra.csv’, sep=’,’, header=False)

20

Appendix B: Matlab Classification Code

% ---

% trainLogisticClassifier(trainingData, headers, isCategoricalPredictor, KFolds)

% returns a logistic classifier and its accuracy

%

% Input:

% trainingData: the training data in matrix format with the

% variables in columns and the response variable in the last

% column

% headers: the labels of the variables in the data in the same order

% as they appear in the data matrix

% isCategoricalPredictor: an array of boolean flags one for each

% predictor variable to indicate if the variable is categorical

% or not

% KFolds: the number of folds to be used for cross-validation when

% computing the validation accuracy of the model

%

% Output:

% trainedClassifier: a struct containing the trained classifier

% containing various fields with information about the classifier.

%

% trainedClassifier.predictFcn: a function to make predictions

% on new data. It takes an input in the same matrix format as

% the training code and returns predictions for the response.

%

% validationAccuracy: (1 - mean squared error) between the observations

% in a fold when compared against predictions made with a tree

% trained on the out-of-fold data.

%

% Author: Ioana Boier, Sep 2016

% ---

function [trainedClassifier, validationAccuracy] = ...

trainLogisticClassifier(trainingData, headers, isCategoricalPredictor, KFolds)

% Extract predictors and response, check input dimensions

inputTable = array2table(trainingData, ’VariableNames’, headers);

n = size(trainingData, 2);

if (n ~= size(headers, 2))

error(’Error: training data and the headers must have the same number of columns.’)

end;

predictorNames = headers(1:n-1);

predictors = inputTable(:, predictorNames);

response = trainingData(:, n);

if (size(isCategoricalPredictor, 2) ~= n-1)

error(’Error: number of predictors must be equal to number of categorical flags’)

end;

% Create and train the classifier

% For logistic regression response values must be converted to zeros

% and ones as the responses are assumed to follow a binomial distribution

% 1 or true = ’successful’ class

% 0 or false = ’failure’ class

21

% NaN - missing response.

successClass = double(1);

failureClass = double(0);

missingClass = double(NaN);

successFailureAndMissingClasses = [successClass; failureClass; missingClass];

isMissing = isnan(response);

zeroOneResponse = double(ismember(response, successClass));

zeroOneResponse(isMissing) = NaN;

categoricalPredictorIndex = find(isCategoricalPredictor);

concatenatedPredictorsAndResponse = [predictors, table(zeroOneResponse)];

% Train using zero-one responses, specifying which predictors are categorical

GeneralizedLinearModel = fitglm(...

concatenatedPredictorsAndResponse, ...

’Distribution’, ’binomial’, ...

’link’, ’logit’, ...

’CategoricalVars’, categoricalPredictorIndex);

% Convert predicted probabilities to predicted class labels and scores

convertSuccessProbsToPredictions = ...

@(p) successFailureAndMissingClasses(~isnan(p).*((p<0.5) + 1) + isnan(p)*3);

returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)};

scoresFcn = @(p) [1-p, p];

predictionsAndScoresFcn = ...

@(p) returnMultipleValuesFcn(convertSuccessProbsToPredictions(p), scoresFcn(p));

% Create the result object containing the prediction function

predictorExtractionFcn = @(x) array2table(x, ’VariableNames’, predictorNames);

logisticRegressionPredictFcn = @(x) predictionsAndScoresFcn(predict(GeneralizedLinearModel, x));

trainedClassifier.predictFcn = @(x) logisticRegressionPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result object

trainedClassifier.GeneralizedLinearModel = GeneralizedLinearModel;

trainedClassifier.SuccessClass = successClass;

trainedClassifier.FailureClass = failureClass;

trainedClassifier.MissingClass = missingClass;

trainedClassifier.ClassNames = {successClass; failureClass};

trainedClassifier.About = ’Logistic classifier @ Ioana Boier, 2016’;

trainedClassifier.HowToPredict = sprintf(’To make predictions on a new matrix, X, use: \n

yfit = trainedClassifier.predictFcn(X) \nX must contain only predictor columns in the same

order as the training data.’);

% Perform cross-validation

cvp = cvpartition(response, ’KFold’, KFolds);

validationPredictions = response;

numObservations = size(predictors, 1);

numClasses = 2;

validationScores = NaN(numObservations, numClasses);

for fold = 1:KFolds

trainingPredictors = predictors(cvp.training(fold), :);

trainingResponse = response(cvp.training(fold), :);

foldIsCategoricalPredictor = isCategoricalPredictor;

isMissing = isnan(trainingResponse);

22

zeroOneResponse = double(ismember(trainingResponse, successClass));

zeroOneResponse(isMissing) = NaN;

categoricalPredictorIndex = find(foldIsCategoricalPredictor);

concatenatedPredictorsAndResponse = [trainingPredictors, table(zeroOneResponse)];

% Train on current fold

GeneralizedLinearModel = fitglm(...

concatenatedPredictorsAndResponse, ...

’Distribution’, ’binomial’, ...

’link’, ’logit’, ...

’CategoricalVars’, categoricalPredictorIndex);

% Convert predicted probabilities to predicted class labels and scores

convertSuccessProbsToPredictions = ...

@(p) successFailureAndMissingClasses(~isnan(p).*((p<0.5) + 1) + isnan(p)*3);

returnMultipleValuesFcn = @(varargin) varargin{1:max(1,nargout)};

scoresFcn = @(p) [1-p, p];

predictionsAndScoresFcn = ...

@(p) returnMultipleValuesFcn(convertSuccessProbsToPredictions(p), scoresFcn(p));

% Create the result struct with predict function

logisticRegressionPredictFcn = ...

@(x) predictionsAndScoresFcn(predict(GeneralizedLinearModel, x));

validationPredictFcn = @(x) logisticRegressionPredictFcn(x);

% Compute validation predictions and scores

validationPredictors = predictors(cvp.test(fold), :);

[foldPredictions, foldScores] = validationPredictFcn(validationPredictors);

% Store predictions and scores in the original order

validationPredictions(cvp.test(fold), :) = foldPredictions;

validationScores(cvp.test(fold), :) = foldScores;

end

correctPredictions = (validationPredictions == response);

validationAccuracy = sum(correctPredictions)/length(correctPredictions);

% ---

% logisticModel.m: driver code to load a curated subset of the BRFSS 2015

% data and perform logistic regression

%

% Author: Ioana Boier, Sep 2016

% ---

clear;

% iteration can be 1 or 2 and indicates which pass of the regression is

% being performed:

% pass 1: initial data with 31 features manually selected from BRFSS

% dataset

% pass 2: reduced data with 24 features after p-value base feature

% selection

% pass 3: reduced data with 7 features after tree selection

iteration = 2;

23

% setup data matrix, headers, and categorical flags

if (iteration == 1)

data = csvread(’data/brfss2015_hy1_extra.csv’);

headers = {’age’; ’sex’; ’bmi’; ’marital’; ’educ’; ’race’; ’income’; ...

’exercise’; ’cholest’; ’alcohol’; ’asthma’; ’medcost’; ’copd’; ...

’depression’; ’rentown’; ’employ’; ’internet’; ’smoke’; ’juice’; ...

’fruit’; ’bean’; ’veggie’; ’diabetes’; ’healthplan’; ’arthritis’; ...

’kidney’; ’veteran’; ’blind’; ’cognition’; ’diffwalk’; ’tobacco’; ...

’hypert’};

isCategoricalPredictor = [

true; true; true; true; true; true; ...

true; true; true; true; true; true; ...

true; true; true; true; true; true; ...

false; false; false; false; true; true; ...

true; true; true; true; true; true; true];

elseif (iteration == 2)

data = csvread(’data/brfss2015_hy2_extra.csv’);

headers = {’age’; ’sex’; ’bmi’; ’marital’; ’educ’; ’race’; ’exercise’; ...

’cholest’; ’alcohol’; ’medcost’; ’copd’; ’depression’; ’internet’; ...

’smoke’; ’juice’; ’fruit’; ’diabetes’; ’healthplan’; ’arthritis’; ...

’kidney’; ’veteran’; ’blind’; ’diffwalk’;’tobacco’; ...

’hypert’};

isCategoricalPredictor = [

true; true; true; true; true; true; ...

true; true; true; true; true; true; ...

true; true; false; false; true; true; ...

true; true; true; true; true; true];

else

data = csvread(’data/brfss2015_hy3_extra.csv’);

headers = {’age’; ’sex’; ’bmi’; ’cholest’; ...

’arthritis’; ’diffwalk’; ’diabetes’; ...

’hypert’};

isCategoricalPredictor = [

true; true; true; true; true; true; true;];

end;

[m, n] = size(data);

% invoke the classifier with 10-fold cross validation

[trainedClassifier, accuracyTrain] = ...

trainLogisticClassifier(data(:,2:n), headers’, isCategoricalPredictor’, 10);

% display results for the training set

fprintf(’\naccuracyTrain = %.4f’, accuracyTrain);

trainedClassifier.GeneralizedLinearModel.Coefficients

% Perform out-of-sample validation on the 2013 BRFSS dataset

if (iteration == 1)

testData = csvread(’data/brfss2013_hy1_extra.csv’);

elseif (iteration == 2)

testData = csvread(’data/brfss2013_hy2_extra.csv’);

else

testData = csvread(’data/brfss2013_hy3_extra.csv’);

end;

24

yfit = trainedClassifier.predictFcn(testData(:,2:n-1));

% calculate and display classification measures for the test set

posLabels = (testData(:,n) == 1);

negLabels = (testData(:,n) == 0);

TP = sum(yfit.*posLabels==1);

TN = sum(~yfit.*negLabels==1);

FP = sum(yfit.*negLabels==1);

FN = sum(~yfit.*posLabels==1);

Accuracy = (TP+TN)/(TP+TN+FP+FN);

Precision = TP/(TP+FP);

Recall = TP/(TP+FN);

Specificity = TN/(FP+TN);

AUC = 0.5*(TP/(TP+FN)+TN/(TN+FP));

fprintf(’\nConfusion matrix:\nTN = %d, FP = %d\nFN = %d, TP = %d\n’, TN, FP, FN, TP);

fprintf(’\nTotal: %d’, TN+FN+TP+FP);

fprintf(’\nAccuracy: %.4f’, Accuracy);

fprintf(’\nPrecision: %.4f’, Precision);

fprintf(’\nRecall: %.4f’, Recall);

fprintf(’\nSpecificity: %.4f’, Specificity);

fprintf(’\nAUC: %.4f\n’, AUC);

% ---

% trainTreeClassifier(trainingData, headers, isCategoricalPredictor, KFolds)

% returns a tree classifier and accuracy-related information

%

% Input:

% trainingData: the training data in matrix format with the

% variables in columns and the response variable in the last

% column

% headers: the labels of the variables in the data in the same order

% as they appear in the data matrix

% isCategoricalPredictor: an array of boolean flags one for each

% predictor variable to indicate if the variable is categorical

% or not

% KFolds: the number of folds to be used for cross-validation when

% computing the validation accuracy of the model

%

% Output:

% trainedClassifier: a struct containing the trained classifier

% containing various fields with information about the classifier.

%

% trainedClassifier.predictFcn: a function to make predictions

% on new data. It takes an input in the same matrix format as

% the training code and returns predictions for the response.

%

% validationAccuracy: (1 - mean squared error) between the observations

% in a fold when compared against predictions made with a tree

% trained on the out-of-fold data.

%

% validationPredictions: predicted class labels for every fold

%

25

% validationScores: posterior probabilities of the classification for

% every fold

%

% Author: Ioana Boier, Sep 2016

% ---

function [trainedClassifier, validationAccuracy, validationPredictions, validationScores] = ...

trainTreeClassifier(trainingData, headers, isCategoricalPredictor, KFolds)

% Extract predictors and response, check input dimensions

inputTable = array2table(trainingData, ’VariableNames’, headers);

n = size(trainingData, 2);

if (n ~= size(headers, 2))

error(’Error: training data and the headers must have the same number of columns.’)

end;

predictorNames = headers(1:n-1);

predictors = inputTable(:, predictorNames);

response = trainingData(:, n);

if (size(isCategoricalPredictor, 2) ~= n-1)

error(’Error: number of predictors must be equal to number of categorical flags’)

end;

% Create and train the classifier

classificationTree = fitctree(...

predictors, ...

response, ...

’CategoricalPredictors’,isCategoricalPredictor,...

’MaxNumSplits’,100);

% Create the result object containing the prediction function

predictorExtractionFcn = @(x) array2table(x, ’VariableNames’, predictorNames);

treePredictFcn = @(x) predict(classificationTree, x);

trainedClassifier.predictFcn = @(x) treePredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result object

trainedClassifier.ClassificationTree = classificationTree;

trainedClassifier.About = ’Tree classifier @ Ioana Boier, 2016’;

trainedClassifier.HowToPredict = sprintf(’To make predictions on a new matrix, X, use: \n

yfit = trainedClassifier.predictFcn(X) \nX must contain only predictor columns in the

same order as the training data.’);

% Perform cross-validation

partitionedModel = crossval(trainedClassifier.ClassificationTree, ’KFold’, KFolds);

% Compute validation accuracy

validationAccuracy = 1 - kfoldLoss(partitionedModel, ’LossFun’, ’ClassifError’);

% Compute validation predictions and scores

[validationPredictions, validationScores] = kfoldPredict(partitionedModel);

% ---

% treeModel.m: driver code to load a curated subset of the BRFSS 2015

% data and perform decision tree classification

%

% Author: Ioana Boier, Sep 2016

26

% ---

clear;

% load the reduced data after the second iteration of logistic regression

data = csvread(’data/brfss2015_hy2_extra.csv’);

[m, n] = size(data);

headers = {’age’; ’sex’; ’bmi’; ’marital’; ’educ’; ’race’; ’exercise’; ...

’cholest’; ’alcohol’; ’medcost’; ’copd’; ’depression’; ’internet’; ...

’smoke’; ’juice’; ’fruit’; ’diabetes’; ’healthplan’; ’arthritis’; ...

’kidney’; ’veteran’; ’blind’; ’diffwalk’;’tobacco’; ...

’hypert’};

isCategoricalPredictor = [

true; true; true; true; true; ...

true; true; true; true; true; ...

true; true; true; true; false; false; ...

true; true; true; true; true; true; true; true];

% invoke the classifier with 10-fold cross validation

kfold = 10;

[trainedClassifier, accuracyTrain, ~, ~] = ...

trainTreeClassifier(data(:,2:n), headers’, isCategoricalPredictor’, kfold);

% display results for the training set and the tree

fprintf(’\naccuracyTrain = %.4f’, accuracyTrain);

t1 = trainedClassifier.ClassificationTree;

view(t1, ’Mode’,’graph’)

% prune the tree to optimal level

[~,~,~,bestlevel] = cvLoss(t1,’SubTrees’,’All’);

t2 = prune(t1,’level’,bestlevel);

% display results for the pruned tree

classError2 = kfoldLoss(crossval(t2, ’KFold’, kfold), ’LossFun’, ’ClassifError’);

accuracyPrune = 1 - classError2;

fprintf(’\naccuracyPrune = %.4f, bestlevel = %d’, accuracyPrune, bestlevel);

view(t2, ’Mode’,’graph’)

% Perform out-of-sample validation on the 2013 BRFSS dataset

testData = csvread(’data/brfss2013_hy2_extra.csv’);

yfit = trainedClassifier.predictFcn(testData(:,2:n-1));

% calculate and display classification measures for the test set

posLabels = (testData(:,n) == 1);

negLabels = (testData(:,n) == 0);

TP = sum(yfit.*posLabels==1);

TN = sum(~yfit.*negLabels==1);

FP = sum(yfit.*negLabels==1);

FN = sum(~yfit.*posLabels==1);

Accuracy = (TP+TN)/(TP+TN+FP+FN);

Precision = TP/(TP+FP);

Recall = TP/(TP+FN);

Specificity = TN/(FP+TN);

AUC = 0.5*(TP/(TP+FN)+TN/(TN+FP));

27

fprintf(’\nConfusion matrix:\nTN = %d, FP = %d\nFN = %d, TP = %d\n’, TN, FP, FN, TP);

fprintf(’\nTotal: %d’, TN+FN+TP+FP);

fprintf(’\nAccuracy: %.4f’, Accuracy);

fprintf(’\nPrecision: %.4f’, Precision);

fprintf(’\nRecall: %.4f’, Recall);

fprintf(’\nSpecificity: %.4f’, Specificity);

fprintf(’\nAUC: %.4f\n’, AUC);

28

Appendix C: Logistic Coefficients

After the first iteration of the logistic regression, the coefficients and their corresponding statistics:

Estimate SE tStat pValue

___________ __________ __________ ___________

(Intercept) -2.3481 0.065242 -35.99 1.1797e-283

age_2 0.45251 0.047173 9.5925 8.5974e-22

age_3 0.86719 0.046029 18.84 3.5482e-79

age_4 1.2919 0.045518 28.382 3.3928e-177

age_5 1.7119 0.045565 37.57 6.6133e-309

age_6 2.1479 0.046534 46.157 0

sex_2 -0.29563 0.0099745 -29.638 4.7992e-193

bmi_1 0.67489 0.0094574 71.361 0

bmi_9 0.60499 0.018925 31.968 3.0222e-224

marital_2 0.050066 0.012699 3.9424 8.0683e-05

marital_3 0.2369 0.013443 17.622 1.6591e-69

marital_4 0.072743 0.030601 2.3771 0.017449

marital_5 0.085139 0.015359 5.5432 2.9702e-08

marital_6 2.1694e-05 0.028995 0.00074822 0.9994

marital_9 -0.11977 0.060665 -1.9742 0.048354

educ_2 -0.016808 0.018806 -0.89374 0.37146

educ_3 -0.077797 0.019366 -4.0172 5.8893e-05

educ_4 -0.22156 0.019822 -11.177 5.2772e-29

educ_9 -0.13569 0.084719 -1.6016 0.10925

race_2 0.67382 0.016655 40.457 0

race_3 0.10205 0.036204 2.8187 0.0048219

race_4 0.15812 0.031501 5.0195 5.1796e-07

race_5 0.25412 0.079326 3.2035 0.0013575

race_6 -0.035004 0.06423 -0.54497 0.58577

race_7 0.15387 0.031603 4.869 1.1219e-06

race_8 -0.015395 0.017928 -0.85871 0.3905

race_9 -0.020136 0.035001 -0.57529 0.5651

income_2 -0.023421 0.018999 -1.2327 0.21767

income_3 -0.040778 0.020967 -1.9449 0.051785

income_4 -0.034793 0.020346 -1.71 0.087258

income_5 -0.1294 0.019455 -6.6512 2.9076e-11

income_9 -0.10931 0.019559 -5.5888 2.2867e-08

exercise_1 -0.13219 0.0096987 -13.63 2.6722e-42

exercise_9 -0.19201 0.05071 -3.7865 0.00015279

cholest_1 0.78986 0.0082853 95.334 0

cholest_9 0.46057 0.04475 10.292 7.6456e-25

alcohol_1 0.28489 0.018263 15.6 7.3065e-55

alcohol_9 0.10557 0.033802 3.1232 0.0017888

asthma_2 -0.0020918 0.024831 -0.08424 0.93287

asthma_3 -0.12338 0.014734 -8.3735 5.591e-17

asthma_9 -0.0084614 0.051869 -0.16313 0.87042

medcost_1 0.11153 0.015606 7.1465 8.8987e-13

medcost_9 -0.072574 0.09736 -0.74542 0.45602

copd_1 0.079539 0.01573 5.0565 4.2706e-07

copd_9 0.04288 0.061652 0.69551 0.48673

depression_1 0.07462 0.011304 6.6014 4.0722e-11

depression_9 -0.030499 0.067524 -0.45168 0.6515

29

rentown_2 0.0039891 0.012159 0.32806 0.74286

rentown_3 0.066852 0.025181 2.6549 0.0079343

rentown_9 -0.10814 0.061606 -1.7553 0.079201

employ_2 -0.14374 0.015764 -9.1187 7.6038e-20

employ_3 0.10138 0.02995 3.3851 0.00071155

employ_4 0.043232 0.032394 1.3346 0.18202

employ_5 0.04617 0.019296 2.3928 0.016721

employ_6 -0.057137 0.048208 -1.1852 0.23592

employ_7 0.1514 0.0127 11.922 9.1431e-33

employ_8 0.14017 0.019561 7.1659 7.7267e-13

employ_9 0.0088224 0.05805 0.15198 0.8792

internet_1 -0.13108 0.011862 -11.05 2.1943e-28

internet_9 -0.12618 0.10245 -1.2316 0.21809

smoke_1 0.018092 0.0086217 2.0984 0.035867

smoke_9 0.0041646 0.060341 0.069017 0.94498

juice 0.00023664 6.6849e-05 3.5399 0.00040033

fruit -0.00044283 4.5984e-05 -9.6302 5.9624e-22

bean -0.00018224 0.00010381 -1.7555 0.079173

veggie 0.0001223 5.6264e-05 2.1736 0.029733

diabetes_1 0.85461 0.012514 68.292 0

diabetes_9 0.37652 0.1167 3.2265 0.0012531

healthplan_1 0.10953 0.020141 5.4381 5.3843e-08

healthplan_9 -0.24119 0.096444 -2.5008 0.012391

arthritis_1 0.28375 0.0090663 31.297 5.1455e-215

arthritis_9 0.097987 0.054254 1.8061 0.070905

kidney_1 0.64544 0.023001 28.062 2.882e-173

kidney_9 0.55835 0.081454 6.8547 7.1467e-12

veteran_1 -0.10439 0.012934 -8.0708 6.9851e-16

veteran_9 -0.18235 0.13786 -1.3227 0.18593

blind_1 0.096247 0.019872 4.8434 1.2762e-06

blind_9 0.093665 0.085672 1.0933 0.27426

cognition_1 -0.0036906 0.015937 -0.23157 0.81687

cognition_9 -0.11467 0.060612 -1.8919 0.058511

diffwalk_1 0.30918 0.012443 24.847 2.7648e-136

diffwalk_9 0.16097 0.066634 2.4157 0.015707

tobacco_2 -0.16407 0.049022 -3.3469 0.00081708

tobacco_3 -0.26639 0.032764 -8.1305 4.2746e-16

tobacco_9 -0.13615 0.099293 -1.3712 0.1703

After the final iteration of feature selection based on p-values, the coefficients of the remaining features
and their corresponding statistics:

Estimate SE tStat pValue

___________ _________ _______ ___________

(Intercept) -2.4974 0.056324 -44.34 0

age_2 0.4653 0.045279 10.276 9.022e-25

age_3 0.8886 0.043092 20.621 1.7714e-94

age_4 1.3152 0.04214 31.21 7.8529e-214

age_5 1.7696 0.041918 42.217 0

age_6 2.293 0.04204 54.544 0

sex_2 -0.24974 0.0096932 -25.765 2.1985e-146

bmi_1 0.68332 0.0094479 72.325 0

bmi_9 0.6134 0.019088 32.136 1.399e-226

marital_1 -0.16909 0.0086305 -19.592 1.7939e-85

30

educ_1 -0.19895 0.0089493 -22.231 1.7104e-109

race_2 0.29765 0.010902 27.303 3.8927e-164

exercise_1 -0.12781 0.0097539 -13.103 3.1649e-39

exercise_9 -0.15367 0.034999 -4.3907 1.13e-05

cholest_1 0.78983 0.0083214 94.916 0

cholest_9 0.43233 0.046257 9.3464 9.0721e-21

alcohol_1 0.26055 0.018329 14.215 7.4282e-46

alcohol_9 0.079003 0.03448 2.2913 0.021947

medcost_1 0.11718 0.01565 7.4874 7.0235e-14

copd_1 0.12959 0.015313 8.4624 2.6193e-17

depression_1 0.082318 0.010843 7.5917 3.1585e-14

internet_1 -0.17914 0.011223 -15.962 2.3359e-57

smoke_1 0.0242 0.0085968 2.815 0.0048773

juice 0.0003177 6.753e-05 4.7046 2.5435e-06

fruit -0.00047948 4.484e-05 -10.693 1.0953e-26

diabetes_1 0.8641 0.012586 68.658 0

diabetes_9 0.45459 0.13189 3.4468 0.00056721

healthplan_1 0.12494 0.019964 6.2584 3.8899e-10

arthritis_1 0.30489 0.0090607 33.649 3.1912e-248

kidney_1 0.64996 0.023209 28.005 1.4097e-172

kidney_9 0.62254 0.087391 7.1237 1.0508e-12

veteran_1 -0.085156 0.012937 -6.5822 4.636e-11

blind_1 0.12262 0.01987 6.1713 6.772e-10

diffwalk_1 0.35333 0.012007 29.428 2.4238e-190

tobacco_2 -0.1541 0.04935 -3.1225 0.0017932

tobacco_3 -0.25514 0.033008 -7.7296 1.0787e-14

The coefficients of the logistic regression after tree-based feature selection:

Estimate SE tStat pValue

________ _________ _______ ___________

(Intercept) -2.888 0.038805 -74.423 0

age_2 0.3794 0.042517 8.9235 4.5191e-19

age_3 0.75353 0.0403 18.698 5.1258e-78

age_4 1.1687 0.039337 29.71 5.7617e-194

age_5 1.5915 0.039017 40.789 0

age_6 2.1388 0.038858 55.042 0

sex_2 -0.19488 0.0079294 -24.577 2.2313e-133

bmi_1 0.67703 0.0087914 77.01 0

bmi_9 0.55845 0.016736 33.367 4.0656e-244

cholest_1 0.81295 0.0077752 104.56 0

cholest_9 0.54221 0.040133 13.511 1.3557e-41

arthritis_1 0.3509 0.0084059 41.744 0

diffwalk_1 0.58006 0.010437 55.575 0

diabetes_1 0.95654 0.011691 81.818 0

diabetes_9 0.57657 0.11085 5.2013 1.9792e-07

31

